
HIPEAC 2018 Conference

Proceedings of

RAPDIO 2018 Workshop

Manchester, United Kingdom

22th January 2018

I

Organizing committee

Daniel Chillet, University of Rennes 1
Reda Nouacer, CEA List

Morteza Biglari-Abhari, University of Auckland
Daniel Gracia Pérez, Thales Research & Technology

Gianluca Palermo, Politecnico di Milano

Program committee

Mario Porrmann, Bielefeld University
Roberto Giorgi, University of Siena

Philipp A. Hartmann, Intel
Jeronimo Castrillon, TU Dresden

Sotirios Xydis, National Technical University of Athens
Michael Huebner, Ruhr-University Bochum

Tim Kogel, Synopsys
Frédéric Pétrot, TIMA Lab, Grenoble Institute of Technology

Antonino Tumeo, Politecnico di Milano
Pierre Boulet, Univ Lille 1, CRIStAL
Davide Quaglia, University of Verona

Christian Haubelt, University of Rostock
Alper Sen, Bogazici University

Website

http://www.rapido.deib.polimi.it

http://www.rapido.deib.polimi.it/RapidoProceedings.pdf

http://www.rapido.deib.polimi.it
http://www.rapido.deib.polimi.it/RapidoProceedings.pdf

II

Schedule

— Session 1 10 : 00− 11 : 00
— Keynote 1 Nikil Dutt, University of California, Irvine

Self-Awareness for Heterogeneous MPSoCs : A Case Study using Adaptive, Reflec-
tive Middleware

— Session 2 11 : 15− 12 : 45
— Keynote 2 Tim Kogel, Synopsys

Building Smart SoCs - Using Virtual Prototyping for the Design of SoCs with
Artificial Intelligence Accelerators

— Rabab Bouziane, Erven Rohou and Abdoulaye Gamatie
Compile-Time Silent Store Elimination for Energy Efficiency : an Analytic Eva-
luation for Non-Volatile Cache Memory

— Gereon Onnebrink, Rainer Leupers and Gerd Ascheid
ESL Black Box Power Estimation : Automatic Calibration for IEEE UPF 3.0 Po-
wer Models

— Session 3 14 : 00− 15 : 30
— Keynote 3 Alberto Bosio, Lirmm, Montpellier, France

Cross-Layer system-level reliability Estimation
— Giovanni Liboni, Julien Deantoni, Antonio Portaluri, Davide Quaglia and Robert

De Simone
Beyond Time-Triggered Co-simulation of Cyber-Physical Systems for Performance
and Accuracy Improvements

— Ahmet Erdem, Davide Gadioli, Gianluca Palermo and Cristina Silvano
Design Space Pruning and Computational Workload Splitting for Autotuning OpenCL
Applications

— Vittoriano Muttillo, Giacomo Valente, Daniele Ciambrone, Vincenzo Stoico and
Luigi Pomante
HEPSYCODE-RT : a Real-Time Extension for an ESL HW/SW Co-Design Me-
thodology

— Session 4 16 : 00− 17 : 30
— Keynote 4 Guy Bois, Polytechnique Montreal and President of Space Codesign

Systems
Specific needs for the modelling and the refinement of CPU and FPGA platforms

— Irune Yarza, Mikel Azkarate-Askasua, Kim Grüttner and Wolfgang Nebel
Real-Time Capable Retargeting of Xilinx MicroBlaze Binaries using QEMU

— Asif Ali Khan, Fazal Hameed and Jeronimo Castrillon
NVMain Extension for Multi-Level Cache Systems

— Alexandre Chabot, Ihsen Alouani, Smail Niar and Reda Nouacer
A Fault Injection Platform for Early-Stage Reliability Assessment

III

List of regular papers

ESL Black Box Power Estimation : Automatic Calibration for IEEE UPF 3.0 Power Models,
Gereon Onnebrink, Rainer Leupers and Gerd Ascheid

Beyond Time-Triggered Co-simulation of Cyber-Physical Systems for Performance and Ac-
curacy Improvements, Giovanni Liboni, Julien Deantoni, Antonio Portaluri, Davide Quaglia
and Robert De Simone

Real-Time Capable Retargeting of Xilinx MicroBlaze Binaries using QEMU, Irune Yarza,
Mikel Azkarate-Askasua, Kim Grüttner and Wolfgang Nebel

Design Space Pruning and Computational Workload Splitting for Autotuning OpenCL Appli-
cations, Ahmet Erdem, Davide Gadioli, Gianluca Palermo and Cristina Silvano

Compile-Time Silent Store Elimination for Energy Efficiency : an Analytic Evaluation for
Non-Volatile Cache Memory, Rabab Bouziane, Erven Rohou and Abdoulaye Gamatie

HEPSYCODE-RT : a Real-Time Extension for an ESL HW/SW Co-Design Methodology,
Vittoriano Muttillo, Giacomo Valente, Daniele Ciambrone, Vincenzo Stoico and Luigi Po-
mante

NVMain Extension for Multi-Level Cache Systems, Asif Ali Khan, Fazal Hameed and Jero-
nimo Castrillon

Work in progress paper

Fault Injection Platform for Early-Stage Reliability Assessment, Alexandre Alexandre Cha-
bot, Ihsen Alouani, Smail Niar and Reda Nouacer

IV

ESL Black Box Power Estimation :
Automatic Calibration for IEEE
UPF 3.0 Power Models

V

ESL Black Box Power Estimation: Automatic Calibration for
IEEE UPF 3.0 Power Models

Gereon Onnebrink
Institute for Communication

Technologies and Embedded Systems
RWTH Aachen University, Germany

onnebrink@ice.rwth-aachen.de

Rainer Leupers
Institute for Communication

Technologies and Embedded Systems
RWTH Aachen University, Germany

leupers@ice.rwth-aachen.de

Gerd Ascheid
Institute for Communication

Technologies and Embedded Systems
RWTH Aachen University, Germany

ascheid@ice.rwth-aachen.de

ABSTRACT
Power-aware design space exploration at early electronic system
level (ESL) is highly facilitated by virtual platforms. In order to
define and exchange power models, the IEEE standard 1801-2015 –
UPF has been defined to allow developers, vendors and customers
seamless usage of the same power models. However, one obstacle
is still not covered by the standard: it is not specified and solved
how to construct the model in the first place. This paper offers
a solution to close this gap. A well proven semi-automatic black
box ESL power estimation methodology [17], which allows to have
power estimates with approximately 5 % error, is combined with
UPF. Although the standard is based on power state machines
and requires another tracing method, a procedure is presented to
overcome these differences. Representative case studies show that
similar estimation accuracy can be achieved.

CCS CONCEPTS
• Hardware → Power estimation and optimization; Electronic
design automation; • Computing methodologies → Modeling
methodologies; • General and reference →Measurement;

KEYWORDS
Electronic system level, power model, power estimation, digital
signal processor

ACM Reference Format:
Gereon Onnebrink, Rainer Leupers, and Gerd Ascheid. 2018. ESL Black Box
Power Estimation: Automatic Calibration for IEEE UPF 3.0 Power Models. In
RAPIDO: Rapid Simulation and Performance Evaluation: Methods and Tools,
January 22–24, 2018, Manchester, United Kingdom. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3180665.3180667

1 INTRODUCTION
The ever increasing computational workloads and tighter con-
straints, such as power budget, battery lifetime and sufficient perfor-
mance, have to be tackled by the next generation of Multiprocessor
Systems-on-Chip (MPSoCs). To provide the best trade-off between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RAPIDO, January 22–24, 2018, Manchester, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6417-1/18/01. . . $15.00
https://doi.org/10.1145/3180665.3180667

cost, power and performance, these platforms generally incorpo-
rate diverse processing elements, e.g., general purpose processors,
DSPs and GPUs, along with target application optimised commu-
nication network topologies and memories. Short time-to-market
cycles bear huge challenges to the Design Space Exploration (DSE)
of such complex MPSoCs. While most accurate values for power
consumption and performance can only be gathered at late stages
of the design flow, design decisions made at Electronic System Level
(ESL) have a much stronger impact [25].

Virtual Platforms (VPs) enable hardware and software co-design.
The industry standard approach is to use SystemC Transaction
Level Modelling (TLM) [3] for DSE at ESL. On the one hand, timing
simulation is a stable feature and can be set from cycle accurate
over instruction accurate to pure functional simulation to fit the
need of the MPSoC designer. On the other hand, power estimation
is still under development. Academia has proposed many different
approaches how power-aware simulations at ESL can be achieved.
Some of them have already been adopted and shipped in industry
standard tools. To further unify the community, a common way of
building and exchanging power models for all components of an
MPSoC is required. Usually, IP vendors want to give such models to
their customers or share them internally. The former usually implies
that the component model is shipped as binary code, i.e. black box.
Hence, less inputs are available to drive a shareable power model.
Therefore, the IEEE standard 1801-2015 was extended to provide an
interface [2]. In its current version 3.0, the Unified Power Format
(UPF) supports SystemC TLM VPs and uses Power State Machines
(PSMs) as a reasonable modelling approach for highly accurate
power estimates (cf. Section 3.2).

Unfortunately, the standard lacks one important detail. There is
no definition or procedure how a power model can be constructed
in the first place. In general, an indispensable requirement is the
need of a reference in form of spreadsheets, lower level simulations
from previous design cycles or even hardware measurements. Besi-
des that, a method of calibrating the UPF power model with this
reference is strongly desired. To close this gap, this paper proposes
an extension for the well proven ESL black box power estimation
methodology, presented in [17]. In order to enable automatic power
model calibration for UPF, the following contributions are presen-
ted:

• Extending the ESL black box power estimation method to
support tracing of UPF relevant states.

• Generating PSM power models out of the ESL power estima-
tion methodology approach automatically.

• Evaluation of the proposed methodology for ARMCortex-A9
and Blackfin 609 DSP processors.

RAPIDO, January 22–24, 2018, Manchester, United Kingdom Gereon Onnebrink, Rainer Leupers, and Gerd Ascheid

• Comparison with an industry standard tool that supports
UPF power models.

2 RELATEDWORK
Over the last decade, intensive research has been conducted in in-
dustry and academia to find solutions for power-aware DSE at ESL.
Three industry standard tools are the Virtualizer tool set from Syn-
opsys [23], Aceplorer from Intel Docea [1], and Vista from Mentor
Graphics [25].

Trying to enable fast and power-aware system level simulations
is already done in early work by using equations or table based
power models for each single instruction with a cycle accurate
architectural simulator [5, 6, 27]. More recent work adopts this
technique and enables it for cycle [21] and fast instruction-accurate
SystemC simulations [19]. The concept of functional level power
analysis (FLPA) is a more abstracted variant and presented in [13].
Using FLPA, a power model is built for every functional unit. Newer
work combines FLPAwith SystemC simulations and extends it from
processor models to the entire MPSoC platform, e.g. models for
caches. Measurement on real hardware is performed as calibration
reference for each functional unit [12, 16].

Another approach to build power models is to use finite state ma-
chines, so called PSMs. Such a PSM can be driven from a functional
SystemC simulation [22]. Possible covered states are active and idle
power, and dynamic voltage and frequency scaling affected states.
The works [7, 9] make use of the TLM time annotation style and
the extension mechanism of TLM to implement and drive the PSMs.
There is also work that relies on an older version of the IEEE-1801
standard [4]. But the question how to generate reasonable power
states is not answered.

Besides power models for processors, investigations are con-
ducted with focus on memory and communication networks of
MPSoCs. A power model has been built for a specific 3D-DRAM
system in [11]. A data sheet serves as input for the power values
and the simulation of the DRAM control commands gives the ac-
tual timing behaviour. This procedure is formalised with Petri Nets
in [10]. Looking into communication architectures, a framework
that deals with bus matrices is introduced in [15] and uses energy
macro models to obtain the power and energy consumption. A
linear combination of RTL signal traces is linked into SystemC
TLM modules to estimate power and energy. Generating power
models in a similar way, different communication architectures are
investigated in [18]. A semi-automatic curve-fitting approach is
used to calibrate the power models from ESL traces and a reference,
such as measurements of actual hardware or simulation at lower
abstraction levels.

All previously mentioned approaches have in common that the
power model has to be obtained in the first place, but except the
approach of [18], no generic applicable method is given. Further,
insight into the models is necessary to drive the power estimation.
To overcome the latter, a black box power estimation methodology
is presented and evaluated in [14, 17]. The contributions of these
three works are the basis of this work, where a semi-automatic
generation of UPF power models is proposed.

Pest = S · a = (
1 s2 f · s3

) · ©«
afi1
afi2
afd3

ª®¬

afi1

afi2 f · afd3

0 0

s2,t = 0s2,t = 1 s3,t = 0s3,t = 1

Figure 1: Simplified example of a linear power model and
the corresponding PSMs

3 POWER ESTIMATION METHODOLOGY
The ESL power estimation methodology proposed in [17, 18] is the
key element for semi-automatic calibration of UPF power models.
The concepts are first presented in [18] and modified to support
black box power estimation [17]. Both are briefly summarised be-
low. After that, an introduction to UPF is given, together with the
approach of generating PSMs out of the linear power model.

3.1 Linear Power Model
The CMOS hardware power model is composed of two parts, the
constant leakage power and the dynamic power, which is depen-
dent on short circuit and switching activity. The dynamic actions
performed by the CMOS chip are driven by control signals initiated
by the application. Thus, tracing these control signals is enough to
estimate the dynamic power.

Let there be N − 1 control signal traces, called ESL traces, each
represented by a column vector si ∈ RT , recorded over T sampling
periods of the length tsamp. To model the constant leakage power,
the first trace is set to 1, i.e. s1 = 1. Combining all traces results in
the compact representation of the matrix S ∈ RT×N . Assuming a
linear relation between the traces and the power consumption, the
estimate can be calculated as shown in Equation 1, where a ∈ RN
denotes the so-called power model factors.

Pest = S · a (1)

Originally, this power estimation methodology supports only
fixed frequency simulations. But in modern MPSoCs, Dynamic
Voltage and Frequency Scaling (DVFS) is a common approach to
provide a trade-off between power and performance. With a modi-
fication, it is possible to build frequency aware power models by
adding the current frequency in Equation 1 [17]. With this, explicit
information about the frequency is added to the implicit one stored
in each ESL trace.

P′est = S′ · a′ = (
S f · S) · (afiafd

)
(2)

where afi, afd ∈ RN denote the frequency independent and frequency
dependent power model factors, respectively. An example linear
power model can be seen in the upper part of Figure 1.

ESL Black Box Power Estimation for IEEE UPF 3.0 Power Models RAPIDO, January 22–24, 2018, Manchester, United Kingdom

ARM
Cortex-A9

ARM
Cortex-A9

I-Cache
32 kB

D-Cache
32 kB

D-Cache
32 kB

I-Cache
32 kB

L2 Cache
1MB

DRAM
1GBUARTSpinlock

Memory
Synchro-
nisation

Coherency Bus

Simple Bus

Simple Bus

interrupts

Figure 2: Virtual platform for the OMAP4460 ARM Cortex-
A9 subsystem on the PandaBoard

3.2 IEEE 1801-2015 – UPF
The IEEE standard 1801-2015 [2], also known as UPF is the third
refinement and supports as new feature ESL power modelling and
analysis in virtual prototyping applications. Due to its history of
providing an HDL-independent way of specifying power at early
stages in the design process, such as register transfer level, UPF is
basically an extension of the scripting language Tcl, and a collection
of directives of how to use the specified commands.

The power modelling concept is based on finite state machines,
in this context also known as PSMs. Each state has a specific power
value, either constant or computed by an equation which can be
dependent to other input values, e.g. the current frequency. Transi-
tions from one state to another are triggered by various inputs, such
as logic signal switches, timer events or SystemC TLM transaction
events. The latter forms the basis in this work to apply the black
box constraint. As no internals can be observed in closed-source
components, only the inter module communication is available. The
previous works [14, 17] and Section 5.1 show that TLM transacti-
ons are sufficient for accurate power modelling. To represent this
transition mechanism, the trace matrix stores just the information
if a triggering event happened at a certain time, i.e. S ∈ {0, 1}T ′×N .
T ′ is the number of sampling periods t ′samp, which is the shortest
time interval between two events.

Further, UPF can be used to partition a design into power dom-
ains. Each domain has its own PSM and input trigger set. The sum
over all domains determines the power consumption of the entire
MPSoC. This not only reduces the complexity of a PSM, but also
eases the transformation from the linear model approach to UPF.

3.3 Calibration of UPF PSMs
For the semi-automatic calibration of UPF PSMs, the linear power
model of the estimation methodology presented in [17, 18] is used

Blackfin
609 DSP

Blackfin
609 DSP

D-Cache
32 kB

I-Cache
16 kB

D-Cache
32 kB

I-Cache
16 kB

L2 SRAM
256KB

DRAM
128MBUARTSpinlock

Memory
Synchro-
nisation

Simple Bus

interrupts

Figure 3: Virtual platform for the Blackfin 609 processor on
the FinBoard

as starting point. It is essential to compute the power model factors
first. As shown in [17], the non-negative least-squares approach
reveals the most accurate results.

a := argmin
x

∥S · x − Pref ∥2 subject to x ≥ 0 (3)

where Pref ∈ RT is the reference power trace recorded with an
equal sampling rate at lower level than ESL or real hardware. It is
worth to mention that substituting Swith S′ =

(
S f · S) calibrates

the power model factors for frequency aware power models.
To transform the linear power model into UPF compliant PSMs,

each ai needs to be translated into a separate power domain with
two states. State 1 is always 0, while state 2 is the value of ai . In
the frequency aware model, state 2 is either afdi · f in case of a
frequency dependent factor or afii . The corresponding trigger event
is the same as the tracing position of trace si . State changes appear
from state 1 to 2 if si,t = 1, and from 2 to 1 if si,t = 0. A simplified
example of PSMs with the corresponding linear power model is
shown in Figure 1. For the constant trace s1 = 1, no transitions
are required. Thus, the corresponding state takes the value of the
first power model factor afi1, and has no transitions. Trace s2 is
frequency independent which means that there is one state with
the value of afi2 and it is activated if s2,t = 1. The transition to the
zero state happens if s2,t = 0. The frequency dependent PSM of
trace s3 has to be constructed like s2 with the modification that if
s3,t = 1, the state has the value f · afd3.

4 CASE STUDIES
The proposed extension for supporting standard compliant power
models with the black box power estimation methodology would
lack comprehensible data without using representative case studies.
For better comparison with previous work, the ARM case study in-
troduced in [17] and the Blackfin DSP case study presented in [14]
are reused. In both case studies, the reference power measurement
contains the power consumption of the processors and L1 cache
system. Hence, the power models are built for the processors in-
cluding the L1 cache system. Before summarising the case studies
and employed benchmark set, it is worth to mention that tracing

RAPIDO, January 22–24, 2018, Manchester, United Kingdom Gereon Onnebrink, Rainer Leupers, and Gerd Ascheid

has been adapted. In the previous work, counters are used for the
so called TLM trace. This means, after every tsamp read and write
counters are stored and then reset to zero. This work introduces the
TLM event trace, as UPF reacts on TLM transaction events. Hence,
the trace stores every write and read occurrence of a TLM tran-
saction, which can happen every t ′samp and is the shortest delay
possible in the VP, i.e., the time the shortest event lasts. This results
in t ′samp ≪ tsamp. To keep the size of the traces reasonable, there is
an averaging step added after tsamp. Consequently, the percentage
of how often and long a TLM event happened during tsamp is stored.

Further abstraction similar to the introduced activity trace in [17]
is still possible. Instead of using TLM triggering events, a plain
SystemC signal is used to indicate whether a processor is active
or idle. Thus, the activity trace is set to one, if the core is running.
Otherwise, the trace stores zero.

4.1 ARM Case Study
The reference system for the ARM case study is the dual-core ARM
subsystem of the OMAP4460 SoC from the PandaBoard. The VP
is composed around an instruction accurate ARM Cortex-A9 pro-
cessor model from OVP. For this work, the instruction accurate
standalone simulator contained in the gdb-utils and encapsulated in
a SystemC wrapper replaces the OVP processor model. Besides the
ARM, the entire memory hierarchy is assembled using an in-house
virtual component model library, i.e. L1 data cache with the im-
plementation of the coherency mechanism, L2 caches, DRAM and
buses are present in the VP. All connections aremodelled using TLM
blocking transactions, as this is sufficient for instruction accurate
processor models. Average timing errors of 9 % are reported [17].
Figure 2 illustrates the VP. The peripherals synchronisation and
spinlock memory are used to implement and enable multi-threaded
applications. The locations of TLM event tracing are indicated by
thick blue lines.

4.2 Blackfin Case Study
As reference for the Blackfin case study, the dual core Blackfin 609
DSP from the FinBoard is taken. The instruction accurate proces-
sor model from gdb-utils is wrapped into SystemC context and
used in the VP. From the same in-house virtual component model
library, the memory hierarchy is built, i.e. L1 caches, L2 SRAM,
DRAM and buses. TLM blocking transactions are used to model
the inter-component communication. The timing error of the VP is
on average 6 % [14]. In Figure 3, the locations of TLM event tracing
indicated by thick blue lines can be seen. As for the ARM case study,
multi-threaded applications are enabled and executed using the
peripherals synchronisation and spinlock memory.

4.3 Benchmarks
The benchmarks are executed without an operating system and
directly run as bare-metal code. A representative benchmark set
has been chosen to stress and verify the methodology and reveal
representative results. In-house benchmarks in addition to well-
established standard benchmarks are used.

The standard benchmark selection contains: Dhrystone [26],
LTE uplink receiver PHY benchmark [20] (abbreviated lte-bench),
telecomm package of MiBench [8] (mib/t), StreamIt [24] (stit)

0 1 2 3 4 5

0.22

0.24

0.26

time (s)

po
w
er

(W
)

reference (hardware measurement)
estimate using Synopsys Virtualizer

estimate using BBPEM

Figure 4: Reference power curve and estimated power con-
sumption curves using TLM event traces for the lte-bench
and Blackfin case study

and WiBench [28] (wib). Some of the standard benchmarks have
been modified to use integer arithmetic instead of floating point
emulation. In the following, their name contains the suffix _int.
Both variants, integer and floating point arithmetic, have been used.

Additional in-house multicore benchmarks test the power mo-
delling capabilities of the estimation methodology for the dual
core processors in both case studies. Multi-thread benchmarks are
named mt. The Dhrystone benchmark is modified to run first on
both cores and then twice on one core while the other is idle. This
scheme is repeated three times (dhrystone2co).

5 EVALUATION
The evaluation of the proposed extension to the black box ESL
power estimation methodology is performed in two steps. First,
it is investigated what influence the switch from counter based
TLM traces to the TLM event traces has on the accuracy. For better
clarification in the remainder of this paper, the name BBPEM is
introduced. Estimates computed with TLM event traces or activity
traces, and the usage of the linear power model are later referred
to as received with BBPEM. The second evaluation step examines
the export approach of UPF PSMs. Therefore, the same VPs of
the ARM and Blackfin case study have been ported to Synopsys
Virtualizer, which supports the IEEE 1801-2015 standard. The UPF
power model generated out of the BBPEM flow is imported to
Synopsys Virtualizer and the same evaluation procedure repeated
to have comparable results.

To increase the number of testcases, the evaluation is performed
using the leave-one-out cross-validation scheme: all benchmarks
but one serve as training set to calibrate the power model factors
and export UPF PSMs. The remaining benchmark is used to perform
and evaluate the power estimation methodology.

Due to the timing error of the VP, the reference power trace and
ESL traces might not have the same length. Consequently, high
power consumption phases in the reference trace would be shifted
compared to high activity observed in the ESL trace. To avoid this
timing mismatch, the ESL traces are rescaled to the length of the
reference.

5.1 Power Estimation Results
For obtaining the power estimation results, the relative root mean
squared (RMS) of the error over time of estimated and the reference

ESL Black Box Power Estimation for IEEE UPF 3.0 Power Models RAPIDO, January 22–24, 2018, Manchester, United Kingdom

dh
rys
ton
e

dh
rys
ton
e2c
o

lte
-be
nch

lte
-be
nch

_in
t

mi
b/t
/ad
pcm

mi
b/t
/CR

C3
2

mi
b/t
/FF
T

mi
b/t
/gs
m

mt
/au
dio
_fi
lte
r

mt
/m
an
del
bro
t

mt
/m
atm

ult

mt
/so
bel
_co

ars
e

stit
/bi
ton
ic-
sor
t
stit
/fft

stit
/fft
_in
t

stit
/fil
ter
ban

k
stit
/fm

stit
/m
atm

ul-
blk

stit
/m
atm

ul-
blk
_in
t

stit
/m
atr
ixm

ult

stit
/m
atr
ixm

ult
_in
t

wi
b/C

ha
nn
el

wi
b/E
qu
ali
zer

wi
b/L
TE
Sy
s

wi
b/M

od
De
mo
d

wi
b/R
ate
Ma
tch
er

wi
b/S
CF
DM

A

wi
b/S
cra
mb
De
scr
am
b

wi
b/S
ub
Ca
rri
erM

apD
em
ap

wi
b/T
ran
sfo
rm
Pre
De
c

wi
b/T
urb
o

10

20

re
la
tiv

e
RM

S
po

w
er

es
tim

at
io
n
er
ro
r(
%)

TLM event traces - ARM activity traces - ARM TLM event traces - Blackfin activity traces - Blackfin

Figure 5: Relative RMS power estimation error for fixed frequency power models and BBPEM

dh
rys
ton
e

dh
rys
ton
e2c
o

lte
-be
nch

lte
-be
nch

_in
t

mi
b/t
/ad
pcm

mi
b/t
/CR

C3
2

mi
b/t
/FF
T

mi
b/t
/gs
m

mt
/au
dio
_fi
lte
r

mt
/m
an
del
bro
t

mt
/m
atm

ult

mt
/so
bel
_co

ars
e

stit
/bi
ton
ic-
sor
t
stit
/fft

stit
/fft
_in
t

stit
/fil
ter
ban

k
stit
/fm

stit
/m
atm

ul-
blk

stit
/m
atm

ul-
blk
_in
t

stit
/m
atr
ixm

ult

stit
/m
atr
ixm

ult
_in
t

wi
b/C

ha
nn
el

wi
b/E
qu
ali
zer

wi
b/L
TE
Sy
s

wi
b/M

od
De
mo
d

wi
b/R
ate
Ma
tch
er

wi
b/S
CF
DM

A

wi
b/S
cra
mb
De
scr
am
b

wi
b/S
ub
Ca
rri
erM

apD
em
ap

wi
b/T
ran
sfo
rm
Pre
De
c

wi
b/T
urb
o

5

10

15

20

25

re
la
tiv

e
RM

S
po

w
er

es
tim

at
io
n
er
ro
r(
%)

TLM event traces - ARM activity traces - ARM TLM event traces - Blackfin activity traces - Blackfin

Figure 6: Relative RMS power estimation error for frequency aware power models and BBPEM

power has been used:

eRMS =

√
1
T ·∑T

t=1
(
Pest,t − Pref,t

)2
Pref

(4)

The resulting RMS error of each estimation is shown in Figure 5
for the fixed frequency model using Equation 1. There are four
bars per benchmark. The two left blue coloured ones belong to
the ARM case study and the right two yellow bars to the Blackfin
case study. Over all, it can be seen that out of the 31 benchmarks,
just four have a higher error than 10 %, with the maximum error
of 22.8 %. Further, Blackfin power estimates are on average more
accurate. However, these results show that the proposed methodo-
logy extension is well applicable in the UPF context. Differentiating
between the TLM event and activity trace methods, the average
errors are 4.4 % and 4.8 %, respectively. This proves that TLM event
traces reveals slightly more accurate power estimation with at cost
of more tracing overhead. And activity trace based power models
provide an excellent trade-off between tracing effort and estimation
accuracy.

A comparison of the reference power curve and estimated power
consumption curve using TLM event traces for the lte-bench

and the Blackfin case study can be seen in Figure 4. At first, the
coarse structure is reproduced by the estimate closely, though the
amplitude does not match exactly. Second, the fine structure of the
reference measurement can be found partly in the estimate.

For the assessment of the frequency aware linear power model,
the relative power estimation RMS error is plotted in Figure 6. First
of all, an increase of the error can be observed compared to the fixed
frequency approach. The average error for TLM event and activity
tracing is increased to 6.4 % and 7.8 %, respectively. The maximum
error is 28 %. An explanation for the larger error are non-linearities
present when allowing the frequency to be changeable. However,
the simple linear model fails to compensate this.

5.2 Framework Comparison
The generated UPF models need to be verified by means of a second
tool that officially implements the standard. This is necessary to
ensure that the export approach is reliable enough to exchange
the power models. Therefore, they are generated out of the BBPEM
flow and imported to Synopsys Virtualizer. Repeating the same
evaluation procedure as in the previous section delivers the results
visualised in Figure 7, together with the relative RMS power esti-
mation error possible using BBPEM. Due to the huge amount of

RAPIDO, January 22–24, 2018, Manchester, United Kingdom Gereon Onnebrink, Rainer Leupers, and Gerd Ascheid

TL
M-
fix
ed

act
-fix
ed

TL
M-
aw
are

act
-aw

are

TL
M-
fix
ed

act
-fix
ed

TL
M-
aw
are

act
-aw

are
0

10

20

re
la
tiv

e
RM

S
po

w
er

es
tim

at
io
n
er
ro
r(
%)

BBPEM
Synopsys Virtualizer

Blackfin case study ARM case study

Figure 7: Power estimation error comparison forBBPEM and
Synopsys Virtualizer

testcases, just an overview in the form of a box-and-whiskers plot
is given. The left-hand side of the figure shows the results for the
Blackfin case study and the ARM case study can be found on the
right-hand side. For each tracing variant (TLM event and activity
traces) and power model (fixed frequency and frequency aware),
the left yellow box shows the results of BBPEM. The right blue
box represents the outcome of Synopsys Virtualizer. Comparing
the minimum and maximum (the lower and higher whisker, re-
spectively) directly reveals almost no differences. The 25 % and 75 %
percentile (lower and upper bound of the box, respectively) and
median (bar inside the box) show again only marginal differences.
With these findings, the linear power modelling approach can be
translated into UPF PSMs without loosing accuracy. Additionally, it
is applicable to exchange the power models between two different
frameworks, while achieving the same results.

6 CONCLUSIONS
A method for enabling semi-automatic calibration of IEEE 1801-
2015 standard compliant system level PSMs is presented in this
work. The extension of the black box ESL power estimation met-
hodology of [17] is proven effective with two representative case
studies. First, the traceable information are converted from counter
based TLM traces to standard compliant TLM event traces. Second,
a translation from the linear power model originally used in this
methodology into UPF PSMs is proposed. Two case studies have
been conducted, one with an ARM Cortex-A9 and the other with a
Blackfin 609 DS. Average estimation errors of about 4.6 % and 7.1 %
can be observed using fixed frequency and frequency aware power
models, respectively. Further, it is shown that the generated PSMs
out of the BBPEM flow can be imported in Synopsys Virtualizer
without any significant difference in the power estimation accuracy.

REFERENCES
[1] Docea Aceplorer. [Online] https://www.intel.com/content/www/us/

en/system-modeling-and-simulation/docea/overview.html (accessed
10/2017).

[2] IEEE standard for design and verification of low-power, energy-aware electronic
systems. pages 1–515, March 2016.

[3] SystemC. [Online] http://www.accellera.org/downloads/ standards/
systemc (accessed 09/2015).

[4] T. Bouhadiba, M. Moy, and F. Maraninchi. System-level modeling of energy in
TLM for early validation of power and thermal management. In Proceedings of
the Conference on Design, Automation and Test in Europe, DATE ’13, 2013.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-
level power analysis and optimizations. In Computer Architecture, 2000. Procee-
dings of the 27th International Symposium on, June 2000.

[6] L. Eeckhout and K. D. Bosschere. Early design phase power/performance mo-
deling through statistical simulation. In Proc. 2001 IEEE Intl. Symp. on Performance
Analysis of Systems and Software. IEEE, 2001.

[7] D. Greaves and M. Yasin. TLM POWER3: Power estimation methodology for
SystemC TLM 2.0. In Proceedings of the 2012 Forum on specification & Design
Languages, Semptember 2012.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A free, commercially representative embedded benchmark suite. In
Workload Characterization, WWC-4. IEEE CS, 2001.

[9] W.-T. Hsieh, J.-C. Yeh, S.-C. Lin, H.-C. Liu, and Y.-S. Chen. System power ana-
lysis with DVFS on ESL virtual platform. In SOC Conference (SOCC), 2011 IEEE
International, 2011.

[10] M. Jung, K. Kraft, and N. Wehn. A new state model for DRAMs using petri nets.
In IEEE International Conference on Embedded Computer Systems Architectures
Modeling and Simulation (SAMOS), July 2017.

[11] M. Jung, C. Weis, P. Bertram, G. Braun, and N. Wehn. Power modelling of 3D-
stacked memories with TLM 2.0 based virtual platforms. In Synopsys User Group
Conference (SNUG), May 2013.

[12] S. Kumar Rethinagiri, O. Palomar, J. Arias Moreno, O. Unsal, and A. Cristal. VP-
PET: Virtual platform power and estimation tool for heterogeneous MPSoC based
FPGA platforms. In Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2014.

[13] J. Laurent, N. Julien, E. Senn, and E. Martin. Functional level power analysis: an
efficient approach for modeling the power consumption of complex processors.
In Design, Automation and Test in Europe Conference and Exhibition, 2004.

[14] G. Onnebrink, S. Schürmans, F. Walbroel, R. Leupers, G. Ascheid, X. Chen, and
Y. Harn. Black box power estimation for digital signal processors using virtual
platforms. In RAPIDO ’16 workshop, 2016.

[15] S. Pasricha, Y.-H. Park, F. Kurdahi, and N. Dutt. System-level power-performance
trade-offs in bus matrix communication architecture synthesis. In Hardware/-
Software Codesign and System Synthesis., 2006.

[16] S. K. Rethinagiri, O. Palomar, R. Ben Atitallah, S. Niar, O. Unsal, and A. C. Kes-
telman. System-level power estimation tool for embedded processor based plat-
forms. In Proceedings of the 6th Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, 2014.

[17] S. Schürmans, G. Onnebrink, R. Leupers, G. Ascheid, and X. Chen. Frequency-
aware ESL power estimation for ARM Cortex-A9 using a black box processor
model. ACM Transactions on Embedded Computing Systems (TECS), 2016.

[18] S. Schürmans, D. Zhang, D. Auras, R. Leupers, G. Ascheid, X. Chen, and L. Wang.
Creation of ESL power models for communication architectures using automatic
calibration. In Design Automation Conference (DAC), 2013.

[19] G. Shalina, T. Bruckschloegl, P. Figuli, C. Tradowsky, G. Almeida, and J. Becker.
Bringing Accuracy to Open Virtual Platforms (OVP): A Safari from High-Level
Tools to Low-Level Microarchitectures. volume ICIIIOES, pages 22–27, Dec. 2013.

[20] M. Själander, S. McKee, P. Brauer, D. Engdal, and A. Vajda. An LTE uplink recei-
ver PHY benchmark and subframe-based power management. In Performance
Analysis of Systems and Software (ISPASS). IEEE, 2012.

[21] E. Sotiriou-Xanthopoulos, G. Percy Delicia, P. Figuli, K. Siozios, G. Economakos,
and J. Becker. A power estimation technique for cycle-accurate higher-abstraction
systemc-based cpu models. In Embedded Computer Systems: Architectures, Mo-
deling, and Simulation (SAMOS), 2015, 2015.

[22] M. Streubühr, R. Rosales, R. Hasholzner, C. Haubelt, and J. Teich. ESL power
and performance estimation for heterogeneous MPSoCs using SystemC. In
Specification and Design Languages (FDL), 2011.

[23] Synopsys Virtualizer. [Online] http://www.synopsys.com/prototyping/
virtualprototyping/pages/virtualizer.aspx (accessed 10/2017).

[24] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for streaming
applications. In Intl. Conference on Compiler Construction, Grenoble, France, 2002.

[25] Y. Veller and S.Matalon. Why you should optimize power at the ESL –Whitepaper,
Mentor Graphics. [Online] http://go.mentor.com/cvtq (accessed 10/2017),
Aug 2010.

[26] R. P. Weicker. Dhrystone: A synthetic systems programming benchmark. Comm.
ACM, 1984.

[27] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and use of
Simplepower: A cycle-accurate energy estimation tool. In Proceedings of the 37th
Annual Design Automation Conference, 2000.

[28] Q. Zheng, Y. Chen, R. Dreslinski, C. Chakrabarti, A. Anastasopoulos, S. Mahlke,
and T. Mudge. WiBench: An open source kernel suite for benchmarking wireless
systems. In Workload Characterization (IISWC), 2013.

XII

Beyond Time-Triggered
Co-simulation of Cyber-Physical
Systems for Performance and
Accuracy Improvements

XIII

Beyond Time-Triggered Co-simulation of Cyber-Physical
Systems for Performance and Accuracy Improvements.

Giovanni Liboni
Universite Cote d’Azur, Inria
Sophia Antipolis, France
giovanni.liboni@inria.fr

Julien Deantoni
Universite Cote d’Azur,

CNRS, I3S, Inria
Sophia Antipolis, France

deantoni@polytech.unice.fr

Antonio Portaluri
EDALab Srl
Verona, Italy

antonio.portulari@edalab.it

Davide Quaglia
Department of Computer Science,

University of Verona, Italy
davide.quaglia@univr.it

Robert de Simone
Universite Cote d’Azur, Inria
Sophia Antipolis, France
robert.de_simone@inria.fr

ABSTRACT
Cyber-Physical Systems consist of cyber components con-
trolling physical entities. Their development involves dif-
ferent engineering disciplines, that use different models,
written in languages with different semantics. A coupled
simulation of these models is of prime importance to rapidly
understand the emerging system behavior. The coupling of
the simulations is realized by a coordinator that conveys
data and ensures time consistency between the different
models/simulators. Existing coordinators are usually time
triggered. In this paper we show that time-triggered co-
ordinators may introduce poor performance and accuracy
(both temporal and functional) when used to co-simulate
cyber-physical models. Therefore, we propose a new coor-
dinator mixing time- and event-triggered mechanisms. We
validated the approach in the context of the FMI standard for
co-simulation. To make possible the writing of the new coor-
dinators, we implemented backward compatible extensions
to the FMI API. Also, we implemented a new FMI exporter
in an industrial tool.

KEYWORDS
FMI, Functional Mock-up Interface, event-driven simulation

ACM Reference Format:
Giovanni Liboni, JulienDeantoni, Antonio Portaluri, DavideQuaglia,
and Robert de Simone. 2018. Beyond Time-Triggered Co-simulation
of Cyber-Physical Systems for Performance and Accuracy Improve-
ments.. In RAPIDO: Rapid Simulation and Performance Evaluation:

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate
of a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do
so, for Government purposes only.
RAPIDO, January 22–24, 2018, Manchester, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-6417-1/18/01. . . $15.00
https://doi.org/10.1145/3180665.3180668

Methods and Tools, January 22–24, 2018, Manchester, United King-
dom. ACM, New York, NY, USA, Article x, 8 pages. https://doi.org/
10.1145/3180665.3180668

1 INTRODUCTION
In Cyber-Physical Systems (CPS) digital systems (eventually
distributed) are in charge of controlling physical entities
in the environment, e.g., mechanical, chemical or thermal
mechanisms. Modeling and simulation are traditional tech-
niques to support design but in CPS’s there is a mix of dif-
ferent engineering disciplines [18] each of them using a
domain-specific modeling language with its syntax and se-
mantics. The simulation of such systems should address
a mix of heterogeneous models whose coupling make the
behavior of the system under modeling emerging [8]. To
ensure a fast time to market, it is important to understand
such emerging behavior early in the development process.

In this context, co-simulation is a key enabler. It consists
in the coordinated simulation of different parts of the CPS by
using specific solvers/interpreters for the different modeling
approaches. The “coordinator” among the simulators must
ensure the timely exchange of data between the different
solvers/interpreters according to a so-called “master algo-
rithm”. The development of such coordinator usually relies
on the graph representing the sharing of data between the
different models [2, 4, 5, 24]. It also depends on the nature
of the interaction between the different models [10].

For instance, when the data shared between two mod-
els have a causal relationship (e.g., a producer-consumer
relationship) then the coordinator must ensure that it is
respected during the co-simulation. In literature, there are
coordination languages to define a partial order between the
execution of the models [22].

This coordinator is crucial for the correctness and ef-
ficiency of the co-simulation so that many master algo-
rithms have been proposed [1, 2, 4, 5, 21, 23, 24, 27, 28].
It is worth noticing that all the proposed algorithms are
time triggered, i.e., model execution is forced at predefined

RAPIDO, January 22–24, 2018, Manchester, United Kingdom G. Liboni et al.

time-steps. This is a surprising fact since from the 90’s work
about coordination languages and architecture description
languages (ADLs) proposed more sophisticated techniques
for the correct and efficient coordination among software
components [13, 19, 22].

In this paper, we highlight the loss of efficiency and ac-
curacy introduced by the use of pure time-triggered coordi-
nators by presenting minimal illustrating examples. Then,
we leverage work done in the community to introduce new
master algorithms, especially relevant for CPS since they
mix event and time trigger mechanisms. Finally, we present
experimental results for co-simulation based on the FMI [20]
industrial standard where VHDL digital models are coordi-
nated with Modelica physical models. To enable the writing
of new coordination algorithm, we extended the FMI stan-
dard in a backward compatible way.

2 BACKGROUND ON TIME-TRIGGERED
COORDINATORS

The most common coordinator runs each model for a step
(i.e., a fixed period of time), collects the outputs from all
subsystems and conveys outputs to the inputs of themodel(s)
of interest. Finally, it continues the (co-)simulation for the
required simulation time 1.

In a model, when a discontinuity appears during the sim-
ulation of a step, it may reject the step or not depending on
its implementation. If the step is rejected, the model returns
the discontinuity time to the coordinator and all the models
that already simulated the current step need to be rolled
back to their previously saved state. Then they are asked
to simulate until the time of the discontinuity, values are
exchanged and the simulation continues in a time-driven
fashion. If the step is not rejected, then the exact time of the
discontinuity is unknown; it occurred during the step. Note
that implementation of the rollback procedures is costly, not
always implemented, and according to [9], it may be difficult
to achieve in practice, especially for cyber models.

To understand how to write a coordinator, it is important
to understand that cyber and physical models are funda-
mentally different in the way they are executed (i.e., they
follow a different Model of Computation). These differences
have already been identified and studied in the context of
co-simulation [4, 5, 26]. However, the goal of these studies
was not to propose an appropriate coordinator but rather to
proposed functional and temporal adaptation considering
these differences.

Physical models are usually defined by equations (e.g.,
ODE or DAE) which can be solved at any points in time and a
numerical approach is used to choose the most appropriated
discretization. Usually, in such physical models, smaller the
discretization step is, better the accuracy is.

1many variants of this simple abstraction are available in the literature [1, 2,
4, 5, 21, 23, 24, 27, 28] but the main idea is the same.

Cyber models are based on the notion of, possibly parallel,
sequences of instructions and data are read or written at spe-
cific points in time which depend on the program structure
and are not necessarily periodic. So it is not possible to use a
numerical method to compute an appropriate constant step
size. In the context of time-triggered simulation, each data
transfer can then be seen as a discontinuity and may involve
step rejection with state saving/restoring thus inducing a
possible large overhead at runtime [9]. When step rejection
is not used it implies accuracy problems (see Section 3).

In summary, the designer can either use step rejection
(when implemented) or reduce the co-simulation step; in
both cases there is a loss in simulation speed [6]. If the co-
simulation step is increased, simulation accuracy is reduced.
Therefore, a time-triggered coordinator in the presence of cy-
ber model(s) forces to have a trade-off between performance
and accuracy.

3 MIX EVENT- AND TIME-TRIGGERED
COORDINATOR FOR CPS

3.1 Overview
Wewant to enable the use of cybermodels for the co-simulation
of cyber-physical systems. Based on previous experiments
on synchronous languages [3] and the coordination of het-
erogeneous cyber models [7, 16, 17] we believe that coor-
dinators could be more accurate and efficient if we allow
event-driven communication between the coordinator and
the models under execution. Our goal is twice. On the one
hand, we want to improve the efficiency of the simulation
by 1) avoiding roll back as much as possible and 2) reducing
the communication between a model under simulation and
the coordinator. On the other hand, we want to improve the
accuracy (both temporal and functional) by letting a model
simulate until an event of interest occurs.

This is a well-known mechanism in distributed systems
where unnecessary communications are avoided and where
logical clocks are used to synchronize the systems [11, 15].
This means that the coordinator must be tuned, according
to both the data sharing topology and their properties to
avoid as much as possible the unnecessary synchronizations
between the model simulations, letting them simulate until
a communication is required.

In the next subsections, we describe three examples that
highlight a particular problemwithin the current time-triggered
coordinators. We also propose a coordinator to solve the
problem2.

2All the experiments presented in this paper, the results and the implementa-
tions are provided here https://project.inria.fr/fidel/rapido2018/

Beyond Time-Triggered Co-simulation of CPS RAPIDO, January 22–24, 2018, Manchester, United Kingdom

3.2 Coordination of a cyber model with
discrete output

The first example shows limitations of the time-triggered
coordination for a cyber model with a discrete output.

Let us consider the cyber model of a wheel encoder driver
(C1), producing a discrete signal v1. A wheel encoder is a
sensor that allows tracking the number of wheel rotations.
More precisely, the output of the driver switches from 0 to
1 or conversely each time a 1/32 of revolution of a wheel
is done. Signal v1 is consumed by another model (P1) (see
Figure 1), which computes the actual speed of the wheel
according to the time spent between two successive switches
of v1. Consequently, v1 is assigned only at specific points in
time, depending on the speed of the wheel. This assignment
creates a discontinuity, which is neither a rare event or
symptomatic of a specific phenomenon like in models of
physical systems.

In order for the co-simulation to be correct, all data assign-
ments should be seen by the coordinator and transferred
to P1 at the right time. More generally, such discontinu-
ity implies different problems: a temporal inaccuracy, i.e.,
the changes in the output values are seen by the coordi-
nator at wrong points in time; a functional inaccuracy, i.e.,
the coordinator is missing some of the discontinuities; or a
performance problem, i.e., the roll back mechanism is used
intensively.

Figure 1: ModelC1 produces data v1 consumed by P1.

In order to illustrate this phenomenon, we have created
different time-triggered co-simulation runs where the speed
of the wheel is constant (i.e., v1 changes periodically). We
have used four different setups for the co-simulation period
and we have studied the corresponding impact on the speed
computation according to the information retrieved by the
coordinator. The results are shown in Figure 2, where we can
see that smaller the time trigger period is, smaller the error
is. However, this is never perfect due to the sampling of the
coordinator. Additionally, this oversampling leads to useless
communication points which decrease performance (see [6]),
a fortiori when the wheel turns slowly (i.e., when the period
of v1 is bigger). If the model simulator supports step rejec-
tion, then the accuracy problem does not hold. However,
it introduces roll-backs for each 1/32 of wheel revolution
and consequently a performance problem (see [9]). Finally,
when the time between two switches in the output of the
wheel encoder driver is not constant, the period used for the
co-simulation is either pessimistic or introduce inaccuracy.

To overcome these problems, we propose to let the simu-
lator decide when the simulation must be stopped according

(a) Golden model (b) Step size 5 ms

(c) Step size 50 ms (d) Step size 500 ms
Figure 2: Comparison of the wheel speed between the
goldenmodel and time driven coordinatorwith differ-
ent communication step sizes.

to the configuration done by the coordinator. The goal is to
avoid step rejection, to obtain good accuracy and to reduce
as much as possible the communications between the model
simulator and the coordinator.

Algorithm 1 Coordination algorithm involving a discrete
output
1: P1 := newSpeedComputationModel ;
2: C1 := newWheelEncoderModel ;
3: while t ≤ tend do
4: C1.simulateUntilDiscontinuity(
5: v1,&tnextEvent);
6: P1.doStep(t , tnextEvent − t);
7: tmp = C1.дetV 1();
8: P1.setV 1(tmp);
9: t := tnextEvent ;
10: end while

To drive the co-simulation, we used the coordination spec-
ified in Algorithm 1, where the simulation of C1 and P1 is
coordinated by using both the traditional time-triggered
service (doStep) and a new event-based service (simulateUn-
tilDiscontinuity). Its interface is defined as follows.
simulateUntilDiscontinuity(

in Set<Variable> monitoredVars,
out time nextEventTime)

When using this function on a specific model, the model
simulator monitors the assignments of each variable in the
monitoredVars set. Every time a discontinuity happens on

RAPIDO, January 22–24, 2018, Manchester, United Kingdom G. Liboni et al.

one of these variables, the function sets nextEventTime
to its current internal time and returns immediately. The
function takes two parameters:

• The monitoredVars input parameter is the list of vari-
ables the model simulation has to monitor, looking
for a discontinuity;

• The nextEventTime output parameter returns the in-
ternal simulation time when a discontinuity occurred.

The main idea of the coordinator algorithm is that the
coordinator asks C1 to simulate until a discontinuity is de-
tected on v1. When the function returns, the coordinator
knows 1) the exact time of the assignment and 2) that this
is the first assignment of interest that happened between
time t and tnextEvent . Then the coordinator calls the doStep
function on P1 (line 6) to simulate it until the time at which
the discontinuity appeared inC1. Then, it retrieves the value
that caused the discontinuity from C1 and set it to P1 (line
7 and 8). By using this coordination algorithm, the number
of communication points is equal to the number of disconti-
nuities in the cyber model (i.e., the smallest one to retrieve
all the values of the variable) and the timestamps of the
discontinuities are precisely known. This simple coordina-
tion provides no rollback, no overhead in the co-simulation
execution time and perfect temporal accuracy.

3.3 Coordination of a cyber model with
input(s)

As a second example, consider a cyber modelC1 that senses
the environment (e.g., a room, a CPU) and computes the
temperature. Usually, in the actual implementation of such
system, the environment is sensed periodically. We consider
here that the environment that provides the temperature
evolution is modeled by a physical model P1whose output is
read periodically byC1 (see Figure 3). In usual time-triggered
co-simulation, the co-simulation period is chosen so that the
data obtained by the physical model is fresh enough when
propagated to the cyber model.

Figure 3: Model P1 produces data v1 consumed byC1.

There are three drawbacks here. First, the cyber model
is called several times to update its input even if this input
is not required to be read internally thus wasting simula-
tion time. Second, the physical model is called several times
to compute fresh values that are actually not used by the
cyber model. Third, there is no synchronization between
the actual reading of the input by the cyber model and its
update by the coordinator. This can lead to a temporal in-
accuracy since the actual reading can occur at the end of a
simulation step, i.e., without a fresh input. In this case, either

the designer considers that the freshness of the data is not
important (but that can lead to wrong simulation results
!) or the designer decreases the co-simulation period and
consequently decreases the performance.

As shown in the previous section, increasing the number
of communication points between models and coordinator
for better accuracy decreases the overall performance and
therefore we aim at reducing the number of communication
points without reducing accuracy.

To solve this problem, we propose to enable the simula-
tion of a model until the precise time when it is ready to
internally read on one of its inputs. It provides the coordina-
tor with the time at which the read operation will be actually
done. On the one hand it avoids unnecessary calls to the
cyber model simulator; on the other hand, the coordinator
can ask the physical model to compute the input data at the
exact time it will be read by the cyber model (by calling the
traditional doStep method with the appropriate communi-
cation step size). At the next call of the cyber model, it will
read the input data that has been updated specifically for it.

Algorithm 2 describes the coordinator that implements
such proposition. In this case, C1 is simulated first (line 4
and 5). When it returns, P1 is simulated until the reading
time of C1 (line 6). Then the value retrieved from P1 is sent
to C1 (line 7 and 8).

Algorithm 2 Co-simulation Master Algorithm read opera-
tion
1: P1 := newEnvFMU ;
2: C1 := newSensorDriverFMU ;
3: while t ≤ tend do
4: C1.simulateUntilRead(
5: v1,&tnextEvent);
6: P1.doStep(t , tnextEvent − t);
7: tmp = P1.дetV 1();
8: C1.setV 1(tmp);
9: t := tnextEvent ;
10: end while

To create this coordination we used a new event-based
interface named simulateUntilRead, defined as follows:
simulateUntilRead(

in Set<Variable> inVars,
out Time& nextEventTime)

It enables the simulation of a model until it is ready to do a
read operation on one of the input variables in the inVars
set. The function takes two parameters:

• The inVars input parameter is a list of sensitive Vari-
able for which the function should return before their
communication;

• The nextEventTime output parameter provides the
internal simulator time just before the read occurs.

Beyond Time-Triggered Co-simulation of CPS RAPIDO, January 22–24, 2018, Manchester, United Kingdom

3.4 Conditional simulation
Sometimes, input values of a model internally participate
in a conditional statement. Depending on the condition,
different behaviors are chosen (e.g., by using a traditional
if statement). For instance, let us consider a simple counter
C1 that increments a value v1 consumed by a model P1.
Internally to P1, when v1 reaches a specific value, then P1
changes its behavior. Usually, this is implemented in co-
simulation by periodically providing the input value to the
model, which checks if the value reaches the condition or
not. To avoid previously presented drawbacks, a designer
could use the coordinator presented in section 3.2 where the
input value is provided with a good temporal precision. We
go further here by defining a coordinator that asks a model
to simulate until a specific condition is reached on one of its
output variables. This avoids unnecessary communication
points between the model simulators and the coordinator
and consequently provides better performance.

The coordinator used in this case (Algorithm 3) is similar
to Algorithm 1. However, during the setup phase, it retrieves
the predicates from P1 to construct the condition variables
sent as a parameter of C1 simulation.

Algorithm 3 Coordination Algorithm with Predicate
1: C1 := newEnvFMU ;
2: P1 := newSensorFMU ;
3: conds := P1.дetPredicates();
4: condVars := setupVars(conds);
5: while t ≤ tend do
6: C1.simulateUntilCondition(
7: condVars,&tnextEvent);
8: ... (see Algorithm 1)
9: end while

This coordinator uses a new event-based interface to han-
dle conditional checks:
simulateUntilCondition(

Set<CondVariable> outVars,
Fmu2Time& nextEventTime)

CondVariable extends the Variable structurewith a Boolean
predicate. Using this interface, the model providing data is
simulated and each time an assignment is done on one of
the variables in outVars, then the predicate is evaluated.
When a predicate is evaluated to True, then the function
returns. This interface can have a positive effect on per-
formance provided that more information about the model
internal behavior are available with respect to traditional
co-simulation.

4 TOOL INTEGRATION
In this section, we present the technical background used for
the experiments. We are going to present FMI, the industrial

co-simulation standard, and HIFSuite, a tool suite to perform
model manipulation.

4.1 FMI - Functional Mock-up Interface
FMI is a tool-independent standard framework for co-simula-
tion of dynamic models. The FMI standard is managed and
developed as a Modelica Association Project. FMI provides a
standardized interface allowing different executable models
(named FMU: Functional Mock-up Unit) to be controlled
by an external software entity. The data exchange between
models is restricted to communication points. Between two
communication points (i.e., during a simulation step), the
models are solved independently by each FMU simulator.
The coordination is implemented by the so-called Master
Algorithm (MA). FMI standard regulates the set of interfaces
provided by each simulator (i.e., FMU) which are called by
the master algorithm. The master algorithm is not part of
the FMI standard. It can set or get the current value of an
exposed variable (according to its direction) by using the
standardized FMI API. This API is also used to simulate the
model for a specific interval of time specified in the doStep
method. In the co-simulation mode, each FMU solver decides
how many computational steps should be done in that time
interval to reach the desired precision.

In order to perform experiments, we implemented the
proposed API as a backward compatible extension of FMI.
The extended version of FMI is available on the already
mentioned website.

4.2 HIFSuite
In order to drive our experiments based on both the existing
and the extended FMIAPI, we need cybermodels for which it
is possible to adapt the FMU wrapper. We adopted EDALab’s
HIFSuite3 to make the process automatic.

HIFSuite provides tools to automatically perform sophis-
ticated manipulations on models written in state-of-the-art
Hardware Description Languages (HDL), like Verilog and
VHDL. An HDL file is translated into a Heterogeneous Inter-
mediate Format (HIF) description that can be manipulated
by other HIFSuite tools that generate functionally equiv-
alent C/C++ models. For our purpose, we implemented a
manipulation tool to add an FMI wrapper around the model
before being exported into C/C++. The resulting source code
can then be used to generate an FMU as shown in Figure 4.

More in detail, a front-end tool parses the input HDL
file. It analyzes all the dependencies between processes in
order to handle descriptions involving both synchronous
and asynchronous processes. A dependency graph is gener-
ated to reproduce the cycle-accurate behavior of the model.
Also, when an HDL unit features an input clock signal, a
clock generator process, which simulates the clock signal,
is instantiated to make the model self executable. Then the
3https://www.hifsuite.com/tools

RAPIDO, January 22–24, 2018, Manchester, United Kingdom G. Liboni et al.

Figure 4: FMU generation flow with HIFSuite.

model is abstracted to C/C++ and all processes and data
types are converted. A special structure is created to contain
a field for each input and output port of the original model.
At this point, the FMU exporter tool generates the wrapper
that implements the FMI Standard API. For instance, the im-
plementation of the doStep method ensures that the internal
clock cycles reflect the required simulation time.

The last step generates the C++ source code which must
be compiled to produce a shared library and compressed to
become an FMU. The process has been validated by import-
ing and testing the resulting FMU into Simulink.

To support the new interfaces, HIFSuite has to generate
the previously presented methods and to modify the model
behavior, e.g., to stop the execution before reading a port.

5 EXPERIMENTAL RESULTS
To validate our proposal, we created three different small
illustrative examples. Each example uses FMI to co-simulate
two FMUs, one is a cyber FMU written in VHDL and the
other one is a physical FMU written in Modelica and ex-
ported using JModelica4. We extended FMI introducing the
new event-based interfaces presented in section 3.

5.1 Case study #1
The first case study reproduces the system described in Sec-
tion 3.2, where a cyber FMUC1 implements a wheel encoder
driver and where a physical FMU P1 computes the wheel
speed based on the time between the value switches of the
wheel encoder. The first immediate result was that we obtain
a realistic value of the wheel speed from the coordinator and
so P1 computed perfectly the wheel speed, both in the case
of a constant speed and in the case of a time-varying speed
(see the website for numerical results). We also obtained a
number of communication points between the coordinator
and the FMU which was equal to the number of switches of
v1 so that the implementation behaved as expected.

To compare both approaches from a performance point
of view, we set up the time-triggered co-simulation in order
to obtain less than 1% of error on the computed wheel speed.
The error with time-triggered coordinator and a wheel with

4http://www.jmodelica.org

Method Time
Triggered Mixed

Communication Points 2000000 10000
C1 execution time (ms) 5805 4186
P1 execution time (ms) 2455 89

Table 1: Performance comparison between a time-
triggered approach with less than 1% error and the
proposed approach.

Method Time Triggered Mixed
TTTCS (ms) 5 10 30

Communication
Points 2000 1000 334 200

C1 execution time (ns) 2123 2309 1491 1667
P1 execution time (ns) 4058 2446 850 529

Table 2: Comparison between the time triggered ap-
proach with difference co-simulation period and the
proposed approach.

a diameter of 1 meter is characterized by equation 1:

error = 1 −
π

32 · ∆t
π

32 · (∆t − 2 ·TTTCS)

(1)

where ∆t is the time between two switches of v1 and
TTTCS is the time triggered co-simulation period. In a few
words, the switch can occur just after a read occurs and the
next switch just after the read occurs, providing a maximum
temporal error of 2 times TTTCS . According to this, for a
switch period of 100ms (corresponding to the maximum
speed of the wheel) it is required to set TTTCS to 500ns.
With such settings and for a simulated time of 1000 seconds
we obtained the results shown in Table 1. By reducing the
number of co-simulation points, the co-simulation speed is
doubled.

5.2 Case study #2
We implemented the case study described in Section 3.3,
i.e., a system composed by a physical FMU that implements
the temperature of an environment and a cyber FMU that
implements a sensor driver. It reads periodically the value of
the environment and then uses it for further computation.

We simulated this system using different periods for the
time triggered co-simulation and using the proposed API.
We obtained the best accuracy with the proposed approach
and the performance results for 10 seconds of simulated time
are summarized in Table 2.

As in the previous experiments, with a time-driven ap-
proach, depending if we want to privilege temporal accuracy

Beyond Time-Triggered Co-simulation of CPS RAPIDO, January 22–24, 2018, Manchester, United Kingdom

Method Time Triggered Mixed
Communication Points 20000 40
C1 execution time (ns) 4257 1653
P1 execution time (ns) 49682 479

Table 3: Comparison between the time triggered and
the proposed approach an input is used in a condi-
tional statement.

or performance, we have to choose a different value for the
co-simulation period. If we want good temporal precision
with the time triggered approach, we have to choose a small
period and there is a performance drawback due to the high
number of communication points. If we want to improve
performance, we have to increase the co-simulation period
and we obtain less accurate results due to temporal inaccu-
racy. In table 2, we see that the proposed approach has the
minimum communication points and like previously, the
new approach has the minimum cost and a perfect accuracy.

5.3 case study #3
In the third case, we implement the coordinator described
in Section 3.4. In this experiment a cyber FMU implements a
modulo counter, which is incremented periodically and reset
to 0 at some points. Then, a physical FMU reads this value
and change the slope of its output accordingly if the value
is greater than a specific value or not. As described in 3, the
coordinator starts by simulating C1, which runs until the
condition expected by P1 is reached. Then the coordinator
retrieves the value fromC1 and simulates P1 until the time at
which the value changes. Then the value is set to P1 and the
process continues. Table 3 shows results for a simulated time
of 10 seconds, using the proposed approach and the time-
triggered one. The results are as expected. By reducing the
number of communication points, we increase performance,
here by a factor of 25. Note that with our mechanism, the
point in time when the predicate becomes true is computed
by the value provider and is consequently more accurate
than with a time driven-triggered approach.

6 RELATED WORK
We are not the only ones to spot some limitations in FMI.
For instance, [5] and [4] proposed to add static information
in FMI (e.g., input/output dependencies) or to add the event
type, which has the specificity to be defined only at specific
points in time. These extensions are of great interest and
complementary to ours. However, they did not provide any
implementations or benchmark. Some other related works
like [25] proposed extensions to better integrate cyber mod-
els in a co-simulation. They proposed four new primitives
among which one is close to ours: fmi21DoStep(stepSize, nex-
tEventTime) where a FMU can be simulated for a specific
amount of time and can stop if an internal event occurs,

without a need to roll back. It is the same global idea than
fmi2SimulateUntilDiscontinuity; however, we believe it is
important to specify the variables we want to monitor since
some of them can be unused or their discontinuity can be
irrelevant for the system accuracy. All the other primitives
introduced in [25] are either optimizations like the possibil-
ity to cancel a running step (if another rejected a step) or
used when the FMU can predict their future (like already
proposed in [4]). Compared to all these approaches we went
a step forward by identifying situations where our new ex-
tensions make simulation faster and more accurate. Also,
we implemented them in a backward compatible way. We
found on a FMI forum a proposal to add discrete states and
time events in FMI(https://trac.fmi-standard.org/ticket/353).
Their goal was to add information about the FMU to en-
able the writing of a better master algorithm. We believe
that such greyification of the FMUs are mandatory to help
the designers (and eventually compilers) to better exploit
FMU specificities. Unfortunately, their propositions consider
mainly time-driven information. Still, the general idea is very
interesting and may be completed to provide information
allowing to choose between the time-driven API, the event-
driver API or a combination of both. Finally, in order to
improve performances, some papers proposed to distribute
the FMUs on different hosts [12, 14]. The idea is interesting
but according to previous tries on distributing time-driven
simulations, we believe that introducing an event-driven
API is a key enabler for a correct and efficient distributed
simulation (as highlighted for years by [11, 15]).

7 CONCLUSION
We highlighted some performance and accuracy problems
of time-triggered coordinators when used to co-simulate
Cyber-Physical Systems. We proposed mixed event- and
time-triggered coordinator to overcome these problems. We
showed the benefits of the proposed approach on some small
examples by developing a backward compatible extension
of the FMI standard. Based on the model manipulation flow
provided by the HIFSuite tool, we also implemented an FMI
exporter for VHDL cyber models. We have multiple plans
for future work. Technical future work will consider the full
automation of the VHDL to FMU export and the improve-
ment of the FMU wrapper implementation. Scientific future
work will investigate a modeling environment that provides
enough information about FMUs and their exposed variable
to enable the automatic synthesis of the most efficient co-
ordinator. For this purpose, we are currently exploring the
use of a dedicated language based on a mix between logical
and physical time.

REFERENCES
[1] Muhammad Usman Awais, Peter Palensky, Atiyah Elsheikh, Edmund

Widl, and Stifter Matthias. 2013. The high level architecture RTI as a
master to the functional mock-up interface components. In Computing,

RAPIDO, January 22–24, 2018, Manchester, United Kingdom G. Liboni et al.

Networking and Communications (ICNC), 2013 International Conference
on. IEEE, 315–320.

[2] Jens Bastian, Christop Clauß, Susann Wolf, and Peter Schneider. 2011.
Master for co-simulation using FMI. In Proceedings of the 8th Inter-
national Modelica Conference; March 20th-22nd; Technical Univeristy;
Dresden; Germany. Linköping University Electronic Press, 115–120.

[3] Frédéric Boussinot and Robert De Simone. 1991. The ESTEREL language.
Proc. IEEE 79, 9 (1991), 1293–1304.

[4] David Broman, Christopher Brooks, Lev Greenberg, Edward A Lee,
Michael Masin, Stavros Tripakis, and Michael Wetter. 2013. Determinate
composition of FMUs for co-simulation. In Proceedings of the Eleventh
ACM International Conference on Embedded Software. IEEE Press, 2.

[5] David Broman, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros
Tripakis, and Michael Wetter. 2014. Requirements for Hybrid Cosimu-
lation. Technical Report UCB/EECS-2014-157. EECS Department, Uni-
versity of California, Berkeley. to appear in HSCC, Seattle, WA, April
14-16, 2015.

[6] Stefano Centomo, Julien Deantoni, and Robert De Simone. 2016. Using
SystemC Cyber Models in an FMI Co-Simulation Environment. In 19th
Euromicro Conference on Digital System Design 31 August - 2 Septem-
ber 2016 (19th Euromicro Conference on Digital System Design), Vol. 19.
Limassol, Cyprus. https://doi.org/10.1109/DSD.2016.86

[7] Benoit Combemale, Cédric Brun, Joël Champeau, Xavier Crégut, Julien
Deantoni, and Jérome Le Noir. 2016. A Tool-Supported Approach for
Concurrent Execution of Heterogeneous Models. In 8th European Con-
gress on Embedded Real Time Software and Systems (ERTS 2016).

[8] Benoit Combemale, Julien Deantoni, Benoit Baudry, Robert B. France,
Jean-Marc Jézéquel, and Jeff Gray. 2014. Globalizing Modeling Lan-
guages. IEEE Computer (June 2014), 10–13. https://hal.inria.fr/
hal-00994551

[9] Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher Brooks,
and Edward A. Lee. 2016. FIDE - An FMI Integrated Development
Environment. In Symposium on Applied Computing.

[10] Julien Deantoni, Cédric Brun, Benoit Caillaud, Robert B. France, Gabor
Karsai, Oscar Nierstrasz, and Eugene Syriani. 2015. Domain Global-
ization: Using Languages to Support Technical and Social Coordination.
Springer International Publishing, Cham, 70–87. https://doi.org/10.1007/
978-3-319-26172-0_5

[11] Colin Fidge. 1991. Logical time in distributed computing systems. Com-
puter 24, 8 (1991), 28–33.

[12] Virginie Galtier, Stephane Vialle, Cherifa Dad, Jean-Philippe Tavella,
Jean-Philippe Lam-Yee-Mui, and Gilles Plessis. 2015. FMI-based Dis-
tributed Multi-simulation with DACCOSIM. In Proceedings of the Sym-
posium on Theory of Modeling & Simulation: DEVS Integrative M&S
Symposium (DEVS ’15). Society for Computer Simulation International,
San Diego, CA, USA, 39–46.

[13] David Garlan and Mary Shaw. 1993. An introduction to software archi-
tecture. Advances in software engineering and knowledge engineering 1,
3.4 (1993).

[14] Abir Ben Khaled, Mongi Ben Gaid, Nicolas Pernet, and Daniel Simon.
2014. Fast multi-core co-simulation of Cyber-Physical Systems: Applica-
tion to internal combustion engines. Simulation Modelling Practice and
Theory 47 (2014), 79 – 91. https://doi.org/10.1016/j.simpat.2014.05.002

[15] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21, 7 (1978), 558–565.

[16] Matias Ezequiel Vara Larsen, Julien Deantoni, Benoit Combemale, and
Frédéric Mallet. 2015. A behavioral coordination operator language
(BCOoL). InModel Driven Engineering Languages and Systems (MODELS),
2015 ACM/IEEE 18th International Conference on. IEEE, 186–195.

[17] Matias Ezequiel Vara Larsen, Julien Deantoni, Benoit Combemale, and
Frédéric Mallet. 2015. A Model-Driven Based Environment for Auto-
matic Model Coordination. In Models 2015 demo and posters.

[18] Edward A Lee. 2008. Cyber physical systems: Design challenges. In
Object Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on. IEEE, 363–369.

[19] Nenad Medvidovic and Richard N Taylor. 1997. A framework for classi-
fying and comparing architecture description languages. ACM SIGSOFT
Software Engineering Notes 22, 6 (1997), 60–76.

[20] Modelisar. 2014. FMI for Model Exchange and Co-Simulation. (July
2014). https://fmi-standard.org/downloads#version2

[21] Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor
Karsai, Sandeep Neema, Ted Bapty, John Batteh, Hubertus Tummescheit,
and Chandraseka Sureshkumar. 2014. Model-based integration platform

for FMI co-simulation and heterogeneous simulations of cyber-physical
systems. In Proceedings of the 10 th International Modelica Conference;
Lund; Sweden. Linköping University Electronic Press, 235–245.

[22] George A Papadopoulos and Farhad Arbab. 1998. Coordination models
and languages. Advances in computers 46 (1998), 329–400.

[23] Vitaly Savicks, Michael Butler, and John Colley. 2014. Co-simulating
Event-B and continuous models via FMI. In Proceedings of the 2014
Summer Simulation Multiconference. Society for Computer Simulation
International, 37.

[24] Tom Schierz, Martin Arnold, and Christoph Clauß. 2012. Co-simulation
with communication step size control in an FMI compatible master
algorithm. In Proceedings of the 9th International MODELICA Conference;
Munich; Germany. Linköping University Electronic Press, 205–214.

[25] Jean-Philippe Tavella, Mathieu Caujolle, Charles Tan, Gilles Plessis,
Mathieu Schumann, Stéphane Vialle, Cherifa Dad, Arnaud Cuccuru, and
Sébastien Revol. 2016. Toward an Hybrid Co-simulation with the FMI-
CS Standard. (April 2016). https://hal-centralesupelec.archives-ouvertes.
fr/hal-01301183 Research Report.

[26] S. Tripakis. 2015. Bridging the semantic gap between heterogeneous
modeling formalisms and FMI. In 2015 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS). 60–69. https://doi.org/10.1109/SAMOS.2015.7363660

[27] Bert Van Acker, Joachim Denil, Hans Vangheluwe, and Paul De Meu-
lenaere. 2015. Generation of an Optimised Master Algorithm for FMI
Co-simulation. In Proceedings of the Symposium on Theory of Modeling
& Simulation: DEVS Integrative M&S Symposium (DEVS ’15). Society for
Computer Simulation International, San Diego, CA, USA, 205–212.

[28] Baobing Wang and John S. Baras. 2013. HybridSim: A Modeling and
Co-simulation Toolchain for Cyber-physical Systems. In Proceedings of
the 2013 IEEE/ACM 17th International Symposium on Distributed Simu-
lation and Real Time Applications (DS-RT ’13). IEEE Computer Society,
Washington, DC, USA, 33–40. https://doi.org/10.1109/DS-RT.2013.12

XXII

Real-Time Capable Retargeting of
Xilinx MicroBlaze Binaries using
QEMU

XXIII

Real-Time Capable Retargeting of Xilinx MicroBlaze
Binaries using QEMU – A Feasibility Study

Irune Yarza Mikel Azkarate-askasua

IK4-Ikerlan Technology Research Centre, Dependable Embedded Systems
Po J.M. Arizmendiarrieta, 2

20500 Arrasate-Mondragón, Spain
iyarza@ikerlan.es, emailmazkarateaskasua@ikerlan.es

Kim Grüttner
OFFIS - Institute for

Information Technology
Eschwerweg 2

26121 Oldenburg, Germany
kim.gruettner@offis.de

Wolfgang Nebel
C.v.O. Universität Oldenburg

Ammerländer Heerstr.
114-118

26121 Oldenburg, Germany
nebel@informatik.uni-

oldenburg.de

ABSTRACT
The great expansion and fast evolution of embedded systems mar-
ket and the known advantages of the use of multi-core processors
in this area are generating interest on improved embedded systems
technologies (e.g., shrinking transistor size, new on-chip architec-
tures), which at the same time are shortening the obsolescence pe-
riods of the underlying hardware. As a consequence, software de-
signed for those platforms (a.k.a legacy code), that might be func-
tionally correct and validated code, will be lost when changing
the underlying Instruction Set Architecture (ISA) and peripherals.
Given that many embedded systems execute Real-Time (RT) ap-
plications, the legacy code migration problem directly affects RT
systems. Dynamic Binary Translation (DBT) techniques have been
widely used for the migration of legacy code to a new hardware
platform. However, there are no works which consider their use for
RT legacy code migration. Therefore, this paper analyzes the suit-
ability of a DBT based emulator, Quick EMUlator (QEMU), as a
mean for RT legacy code migration, mainly focusing on its tempo-
ral capacities. To this end, a test framework has been constructed to
check and compare the timing behavior of a bare-metal execution
on a Xilinx MicroBlaze processor against a QEMU emulated Mi-
croBlaze running on an ARM Cortex-A9 processor. Results show
that the proposed approach could provide hard RT performance in
55% and soft RT performance in 74% of our considered bench-
marks.

Keywords
Dynamic Binary Translation, legacy code, Real-Time Systems, re-
targeting

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RAPIDO, January 22–24, 2018, Manchester, United Kingdom
© 2018 ACM. ISBN 978-1-4503-6417-1/18/01. . . $15.00

DOI: https://doi.org/10.1145/3180665.3180671

1. INTRODUCTION
Next generation embedded systems must provide better per-

formance, increased dependability, and energy efficiency, while
achieving a cost effective product withing a reduced time-to-
market. This transition is being encouraged by the important role
of multi-core processors in the area of embedded systems, provid-
ing concurrent resources and increased performance rates at lower
clock frequencies and lower power consumption [7].

The continuous demand for improved embedded system tech-
nologies and the fact that processor manufacturers are universally
moving to multi-core solutions has provoked the shortening of the
obsolescence period of embedded systems hardware and, as a con-
sequence, the need to deal with legacy code. Legacy code is char-
acterized by some particular properties: usually runs on obsolete
hardware which is slow and expensive to maintain [23], has no or
outdated documentation [21], and is essential for the company [5]
since it comprises business knowledge [22].

Due to the fact that classical process models focus on the first
stage of software life cycle (development) instead of operation or
maintenance stages, the process of updating legacy systems is usu-
ally complex, error-prone, time consuming and requires high cost
investments. One of the existing forms to deal with legacy code
is binary translation. The aim of binary translation is to transform
existing binaries (for the legacy ISA) into binaries for the new ar-
chitecture, either statically or dynamically (during emulation). This
way, the legacy system is transformed into a new form that will im-
prove its operation, system capability, functionality, performance
or evolvability at a lower cost, schedule or risk to the customer
[19].

1.1 Motivation
Industry needs a RT software re-targeting approach that can be

easily ported to different target and host processors and we see
binary translation technologies as a good candidate to implement
those needs. Although binary translation techniques have been suc-
cessfully applied to non-RT applications, only [11] and [15] con-
sider RT systems in their proposed approaches. When dealing with
the migration process of legacy RT systems, not only the functional
behavior of the software, but also the temporal behavior has to be

preserved. This is a typical pattern of a reactive RT system, found
in many control applications. One example is a plant controller
system, where the controller is periodically triggered, obtains new
(sensor) data and updates its (actuator) outputs within a specific
period of time, which has to be smaller than its triggering period.

1.2 Contributions
The overall goal of this research is to enable the migration of

RT embedded legacy code to a new hardware platform with guar-
anteed RT performance. This paper describes the first steps of this
research. To this end, this work analyzes the suitability of QEMU,
as a machine-adaptable DBT tool, for its use in a RT property con-
serving re-targeting process. This approach is applicable when the
original source-code is not available or there is a need to keep it
unmodified.

The main contribution of this paper is the construction of a test
environment to check if the timing behavior on the legacy archi-
tecture can be fulfilled on the new architecture. Due to the multi-
host and -target quality of QEMU, our proposed test framework can
easily be ported and used in other guest/host combinations. The de-
tailed technical contributions of this paper are:
• Overview of the state of the art in static and dynamic code

translation techniques heeding portability, embedded sys-
tems or RT legacy code.
• Establishment of a Xilinx MircoBlaze QEMU environment

on a Xilinx Zynq ARM Cortex-A9 processing system.
• Setup of a high-resolution execution time measurement for

periodically triggered software running on QEMU.
• A feasibility study for RT capable re-targeting of Xilinx

MicroBlaze binaries using QEMU on a Xilinx Zynq ARM
Cortex-A9 processing system.

1.3 Outline
The remainder of the paper is organized as follows. An overview

of related work in the area of machine-adaptable static and dynamic
code translation techniques for embedded systems is provided in
Section 2. Then, Section 3 presents the proposed solution and de-
scribes the implementation details of the MircoBlaze QEMU en-
vironment on a Xilinx Zynq ARM Cortex-A9 processing system.
Section 4 describes the construction of the test framework with a
high-resolution execution time measurement of a periodically trig-
gered software. Section 5 executes the feasibility study and dis-
cusses the experimental results. An outlook on future work and a
conclusion is given in Section 6.

2. RELATED WORK
Binary translation techniques have been widely studied and de-

veloped in the last two decades. Some of the utilities of binary
translation techniques include fast simulation of instruction sets, re-
source protection and management (safety), and software security
enforcement. Moreover, binary translation appears to be a standard
approach for legacy software migration, as the software that runs
on the legacy hardware can be migrated to a new hardware plat-
form without a considerable expense of time, effort and money.

The first binary translation techniques were developed in the late
1980s for academic researches and commercial products [10]. In
1987, HP developed one of the earliest commercial binary transla-
tion systems to migrate source HP 3000 programs to the new Preci-
sion Architecture [6]. Followed by the IBM System/370 simulator
running on top of an IBM RT(RISC) PC, MIMIC [17]. Later, bi-
nary translation techniques were used by many other affiliations
aiming a migration path for existing software.

Software based binary translation systems can be classified into

two categories: Static Binary Translation (SBT) and DBT. The
former translates the binary code offline, before the program is ex-
ecuted, while the later translates the binary code at runtime, during
program execution.

Nowadays, most binary translation approaches adopt dynamic
translation, since this technique can easily handle indirect branches
and can perform optimization based on program’s run-time behav-
ior. However, as translation and optimization time counts for a part
of the execution time (which incurs execution overhead), dynamic
translation approaches cannot perform aggressive optimizations.
On the contrary, static translation approaches can perform whole
program optimization without influence on run-time overhead but
they must deal with code discovery, code location and self modi-
fying code issues. Some researches have even implemented hybrid
binary translation techniques to take advantage of the strengths of
both methods.

Given the great amount of binary translation systems, just those
heeding portability, embedded systems and/or RT applications will
be considered here.

2.1 Static Binary Translation
The TIBBIT project [11] was the first binary translation ap-

proach developed for embedded RT applications (which are not as-
sumed to be user-level processes) that needed to be migrated to a
different processor but still maintaining the externally observable
timing behavior. To this end, both, the legacy application and the
operating system code, used by the application, are packed in a
black box that is executed on top of the host operating system.
During the translation process, timing code is inserted into each
translation block, to maintain the timing behavior the same as in
the original processor. If the execution is running faster than it did
in the old processor, other tasks are run until the execution is back
on schedule.

The UQBT [9] was the first SBT tool designed with portability in
mind. UQBT translates the user-level target binary into a Higher-
Level Register Transfer Language (HRTL), which is a machine-
independent representation, and then the HRTL is translated into
host machine binary code, what makes the tool easily and inex-
pensively portable to new target and host architectures. To handle
indirect calls that could not be discovered at static time, the UQBT
uses an interpreter.

Chen et al. [8] developed a SBT solution for embedded systems.
Their tool directly migrated ARM binaries to a MIPS-like archi-
tecture, without using an Intermediate Representation (IR), which
enabled applying architecture specific optimization but at the same
time hindered translator’s retargetability. Their translation tool was
able to migrate user-level ARM binaries without using a run-time
emulator or DBT support.

Heinz [15] proposed a system-level SBT approach for the migra-
tion of RT legacy software. However, instead of dynamically com-
puting a delay, as Cowsgell and Zary did on the TIBBIT project,
the computation of the delay is shifted from run-time to compile-
time. The translator selects from a set of precomputed delays the
appropriate value according to the context of a program point, so
there is no need to keep track of the execution time on the source
machine.

DisIRer [16] is a multi-platform SBT tool based on the GNU
Compiler Collection (GCC) compiler infrastructure. DisIRer con-
verts user-mode target binary programs into GCC IR and then
translates IR into host binary code using GCC optimizer and back
end. The fact that it is based on GCC makes the translator cost
effective and retargetable.

Shen et al. [18] worked out a Low Level Virtual Machine

(LLVM) based retargetable SBT tool for embedded systems,
LLBT. LLBT translates ARM user-mode instructions into LLVM
IRs and then LLVM IRs are translated into machine code for mul-
tiple ISAs. LLVM infrastructure provides LLBT means for opti-
mization and retargetability. In order to make the system suitable
for embedded systems, LLBT reduces the size of the address map-
ping table.

2.2 Dynamic Binary Translation
UQDBT [20] was the first retargetable DBT approach. It is a

dynamic version of UQBT. Just as UQBT, UQDBT does not sup-
port system-level emulation. UQDBT separates the system into
machine-dependent and machine-independent parts, it uses a ma-
chine independent intermediate representation (I-RTL). However,
the machine adaptability of the translator comes at the cost of per-
formance. To improve generated code, UQDBT performs generic
hot path optimizations that are applicable on different types of ma-
chines.

QEMU [4] is a machine emulator, build upon a fast and portable
DBT system. The initial versions of QEMU used to translate the
target source code into micro-operations implemented by a small
sequence of C code which was then pre-compiled into host machine
code using GCC. Newer versions of QEMU use Tiny Code Gen-
erator (TCG) to translate target source code into a machine inde-
pendent representation IR and then translate IRs into host machine
code. In order to reduce system overhead, QEMU applies Trans-
lation Block (TB) chaining, which avoids direct jumps by directly
jumping to the next TB without returning control to the execution
engine.

Baiocchi et al. have proposed different approaches to adapt DBT
to embedded systems with Scratchpad Memory (SPM), which is a
single cycle access and low power memory. To this end, [1] pro-
poses an approach to manage the translated code cache, which is
placed on the SPM, by reducing the amount of additional code in-
jected by the translator. This reduces the cost for re-translating ap-
plication code, and avoiding eviction of frequently executed code.
[3] proposes to bound the size of the translated code cache, lo-
cated also on the SPM, and to reduce the amount of code injected
by the translator to control the execution flow, which accounts for
about the 70% of the code in the translation cache. Furthermore,
[2] presents a code cache spread between SPM, for most frequently
used code, and main memory, where code cache reduction tech-
niques described in [3] are also applied.

Guha et al. also proposed techniques to adapt DBT to embedded
systems, by presenting in [12] 4 different techniques to reduce the
amount of code cache occupied by exit stubs, a balanced path selec-
tion policy, and a selective flushing approach, which are combined
with auxiliary code optimization to improve memory efficiency and
performance [13].

CrossBit [24] is a multi-source and multi-target DBT approach,
which, as the rest of portable solution do, uses an independent inter-
mediate representation known as VInst to translate user-level target
source code into host machine code. CorssBit uses profiling infor-
mation to determine the hot code where optimizations are applied.
These optimizations are generic, so that they can be applied to any
host architecture. CrossBit also applies Basic Block chaining to
avoid direct jumps for further reducing system overhead.

2.3 Summary
Our approach aims to provide a migration path for (soft) RT

legacy code. However, the proposed solution is based on DBT
techniques, which have never before been applied on the migra-
tion process of RT legacy code. The only two approaches (TIBBIT

[11] and Heinz [15]) that aim at the migration of RT legacy code
make use of SBT techniques. Moreover, unlike existing RT code
migration approaches, the proposed solution is machine-adaptable,
so it can easily be ported to other source or target architectures. In
addition, our approach ports an embedded bare-metal application
from a legacy target to a new host architecture, providing a system-
level emulation approach. Table 1 provides a summary of the re-
lated work section and compares our approach the other discussed
solutions.

3. RT LEGACY CODE MIGRATION AR-
CHITECTURE

In order to provide a migration path for soft RT legacy applica-
tions, QEMU as a portable and low overhead DBT tool has been
used. QEMU runs on top of a pre-build minimalistic Ubuntu dis-
tribution for Zynq, available on Xilinx’s Wiki. However, the kernel
has been configured using the PREEMPT_RT patch. The host pro-
cessor is a ARM Cortex-A9 and the target processor (legacy pro-
cessor emulated on QEMU) is a MicroBlaze.

The ported legacy code block is treated as a black box that is
being reused without any knowledge of its implementation. The
only observations of the functional behavior and timing properties
of this block box are done through external monitoring of its In-
put/Output (I/O) ports and variables. This is a typical pattern of a
reactive RT system, found in many control applications. As shown
in Figure 1, the application is periodically triggered (at t0, t1, ...),
obtains new data from the sensors and after a period of time (dt)
updates the actuators. For an appropriate behavior of the system,
the duration of the application (dt) must be bellow the execution
period (tn+1 − tn). When moving to the emulated architecture,
this timing behavior still has to be fulfilled. In other words, since
the aim of this approach is to establish an emulation framework
rather than a simulation framework, the measured end-to-end dura-
tion of the application when running on the emulated architecture
must be below the execution period.

App

t0 t1

App

dt

t2

MicroBlaze

S/A S/A S/A

App
Cortex-A9

S/A S/A S/A

QEMU MB
App

PREEMPT-RT

Real MB Emulated MB
Figure 1: RT legacy code migration path. On the left hand the re-
active RT application running on the legacy hardware. On the right
hand the same application running on the new hardware platform
using the portability layer (QEMU MB + PREEMPT_RT). The top
side of the figure shows the timing behavior that must be fulfilled
on both environments.

Table 1: Related work summary

Name Static/Dynamic Machine-adaptable RT legacy Code Embedded Systems User-/System-level

TIBBIT [11] Static - X X System-level
UQBT [9] Static X - - User-level
Chen [8] Static - - X User-level

Heinz [15] Static - X X System-level
DisIRer [16] Static X - - User-level
LLBT [18] Static X - X User-level

UQDBT [20] Dynamic X - - User-level
QEMU [4] Dynamic X - X System- and User-level

Baiocchi [1–3] Dynamic X - X No info.
Guha [12, 13] Dynamic X - X No info.
CrossBit [24] Dynamic X - - User-level

Our Approach Dynamic X X X User- and System-level

3.1 Linux PREEMPT_RT
In order to fulfill the previously mentioned timing requirements,

the PREEMPT_RT patch has been applied on the Linux kernel.
This patch aims to improve the kernel’s scheduler latency and re-
sponse time, thus achieving a more deterministic Linux environ-
ment without the need of a specific Application Programming In-
terface (API). The PREEMPT_RT patch has been applied to Linux
kernel version 4.9, which is configured to use both CPUs in SMP
mode. The QEMU task has been declared as a RT task with highest
priority, as shown in Listing 1.

1 #include <sched.h>
2 /* We use 49 as PREEMPT_RT uses 50 for the
3 priority of the kernel task sets and
4 interrupt handler by default. */
5 #define MY_PRIORITY (49)
6

7 int main(int argc, char **argv) {
8 struct sched_param param;
9 /* Declare ourselves as a real-time task */

10 param.sched_priority = MY_PRIORITY;
11 if (sched_setscheduler(0, SCHED_FIFO,
12 & param) == -1) {
13 perror("sched_setscheduler failed");
14 exit(-1);
15 }
16 }

Listing 1: Adapt QEMU to PREEMPT_RT (vl.c)

3.2 Launching QEMU-MicroBlaze
QEMU was specially designed to emulate Linux guest systems,

which is reflected in a special start-up procedure. Through the
-kernel argument, a binary file (usually the Linux kernel itself)
is passed to the system, which is loaded on the Operating System
(OS) starting memory address position (0x90000000 for the Mi-
croBlaze). Therefore, to run a bare metal application, the MicroB-
laze local memory has to be placed at address position 0x90000000,
which is configured using Vivado address editor. Moreover, when
compiling the benchmarks, the linker script needs to be modified to
make sure the program is placed at the correct memory location.

The QEMU source code, as provided in the QEMU GIT repos-
itory only allows the emulation of a MicroBlaze on the Spartan-
3A-DSP-1800 board. For this reason, it was necessary to provide
QEMU information about our target system. This is done using a
Device Tree Blob (DTB) file, which can be easily obtained from the
Device Tree Source (DTS) files generated by the Xilinx Software
Development Kit (XSDK) design tool. However, the DTS files are
not properly generated, since XSDK does not allocate the memory,

and defines the machine as a 64-bit system. Listing 2 and listing 3
shows the changes made in the generated DTS files.

1 DDR2SDRAM: memory@90000000 {
2 device_type = "memory";
3 reg = <0x90000000 0x10000000>;
4 };

Listing 2: Allocate memory on the MicroBlaze
(system-top.dts)

1 address_cells = <0x1>

Listing 3: Set system to 32 Bit (pl.dtsi)

4. FEASIBILITY ANALYSIS: TEST
FRAMEWORK

A test framework has been constructed to perform a feasibil-
ity study of the approach described above. This framework pro-
vides means to perform a measurement based Worst Case Execu-
tion Time (WCET) analysis on both, the real and emulated MicroB-
laze processors. Results obtained are then analyzed and compared
in Section 5. For the execution timing measurements on the em-
ulated MicroBlaze, a Linux high-resolution timer has been used.
Whereas for execution timing measurements on the real MicroB-
laze, a custom clock cycle counter has been implemented in the
FPGA. Figure 2 depicts the setup for the feasibility study.

ARM Cortex-A9

Linux Preempt-RT

QEMU

Zynq – Processing System (PS)

Legacy App

Timer

Zynq – Programmable Logic (PL)

PLPS

Legacy App

MicroBlaze
Counter

IP

Figure 2: Test framework. On the left hand the test environ-
ment used to measure execution time on the emulated MicroBlaze
(Cortex-A9). On the right hand the test environment used to mea-
sure execution time on the real MicroBlaze.

4.1 ARM Cortex-A9 (Emulated MicroBlaze)
QEMU uses TCG to translate target source code into a machine

independent IR and then IR into host machine code. For QEMU

a TB is the unit of a basic block. Once translated, such TBs are
stored in the code cache to avoid re-translation of code. Moreover,
to avoid returning control to the emulation manager after the execu-
tion of each TB, QEMU chains consequentially executed TBs. The
tb_find function is in charge of locating the next TB according
to the target Program Counter (PC) value. If this search fails, code
is generated and stored in the code cache to be used in future runs.
When the code cache overflows, all translated TBs are removed.

In order to be able to do timing measurements on the emulated
environment, there is a need to identify the start and end of legacy
code execution. To this end, the target source code has been mod-
ified by adding a function call at the beginning and ending of the
program execution. By using a function call it is ensured that there
is a branch, so in the QEMU translation process this instruction will
be the first in the TB. In the QEMU source code, start and end func-
tion calls are identified through the target PC value. The variables
start_pc and end_pc represent the PC value of start and end
function calls. The PC values of start and end function calls are de-
pendent of the target legacy code (each application has its own val-
ues), so these values are passed through arguments (-start-pc,
-end-pc) when launching QEMU. However, as already men-
tioned, QEMU chains consequently executed TBs in order to re-
duce the translation overhead. This causes the chaining of start and
end TBs to former TBs, and control does not return to the emula-
tion manager. Since there is no way to identify the start and end
of execution, chaining of start and end TBs has been avoided as
shown in Listing 4.

1 if (!tb->invalid &&
2 tb->pc != (0x90000000 + start_pc) &&
3 tb->pc != (0x90000000 + end_pc)) {
4 tb_add_jump (last_tb, tb_exit, tb);
5 }

Listing 4: Avoid chaining start/end TBs (cpu-exec.c)
Since start and end TBs are never chained, it is possible to iden-

tify them. As shown in Listing 5, function tb_find, which is
in charge of finding the next TB to be executed, start_pc and
end_pc are identified. When start and end TBs are identified,
the clock_gettime() POSIX interface is used to access high-
resolution timers (running at nanosecond time granularity) and get
the start and end timing information. Then, the diff function is
used to get the elapsed time.

1 #include <time.h>
2

3 struct timespec diff(struct timespec start,
4 struct timespec end) {
5 struct timespec temp;
6 if ((end.tv_nsec - start.tv_nsec) < 0) {
7 temp.tv_sec = end.tv_sec - start.tv_sec-1;
8 temp.tv_nsec = 1000000000 +
9 end.tv_nsec - start.tv_nsec;

10 } else {
11 temp.tv_sec = end.tv_sec - start.tv_sec;
12 temp.tv_nsec = end.tv_nsec - start.tv_nsec;
13 }
14 return temp;
15 }
16

17 static inline TranslationBlock *tb_find(
18 CPUState *cpu, TranslationBlock *last_tb,
19 int tb_exit) {
20 [...]
21 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
22 if (pc== (0x90000000 + start_pc)) {
23 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1);
24 }
25 else if (pc == (0x90000000 + end_pc)) {
26 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time2);
27 if (runs < program_runs) {
28 temp[runs] = (diff(time1, time2).tv_nsec +

29 (diff(time1, time2).tv_sec *
30 1000000000));
31 runs++;
32 }
33 }
34 [...]
35 }

Listing 5: Identify benchmark start/end (cpu-exec.c)

4.2 MicroBlaze
In order to get execution time measurements on the real Mi-

croBlaze, as shown on Figure 3, a clock cycle counter has been
implemented as a custom hardware block with an AXI slave in-
terface. This counter Intellectual Property (IP) block counts the
clock cycles elapsed from enabling to disabling and stores the ob-
tained result inside a Block-RAM (BRAM). The BRAM is also an
AXI slave, so the MicroBlaze can read data from it. The MicroB-
laze has also an AXI slave General Purpose Input/Output (GPIO),
which is internally connected to the counter IP block to provide the
enabling/disabling capability to the benchmark running on top of
the MicroBlaze.

The counter IP block is in charge of storing the measurement
values. When the GPIO is enabled, the IP block starts counting
and stops when the GPIO is disabled. Then, the IP block stores
the measurement in the BRAM and waits until the next execution
starts. Since the BRAM size is set to 64KB, the benchmarks were
executed 16383 times. This is the maximum amount of data that
can be stored, given that each measurement value has a size of 4
bytes.

MicroBlaze M

GPIO
S

Counter
IP BlockS

BRAM
Controller

S BRAM

Figure 3: Configuration used to measure execution time on the real
MicroBlaze. A custom counter IP block is used and measurement
values are stored in a BRAM.

5. FEASIBILITY RESULTS
For the feasibility study, a selection of 27 WCET benchmark

programs, provided by the Mälardalen WCET research group [14],
have been applied by comparing the execution times of these
benchmarks between the real and emulated MicroBlaze. Since
these benchmarks contain great variety of algorithms (including
loops, nested loops, use of array and/or matrixes and use of floating
point operations), we get a wide analysis of the timing behavior of
the proposed solution.

5.1 Platform configuration
To evaluate the proposed solution, the ZC702 evaluation board

with a Zynq-7000 XC7Z020 SoC has been used. The Zynq-7000
provides software and hardware programmability, integrating a
Dual-core ARM Cortex-A9 (Processing System - PS) and an FPGA
(Programmable Logic - PL) on a single chip.

For the execution time analysis on the real MicroBlaze, a bit-
stream has been generated for the Zynq Programmable Logic (PL)

part. The bitstream includes the MicroBlaze version 10.0 config-
ured with: local BRAM memory for instruction and data, 64KB
each (the use of cache is disabled); without a floating point unit;
and optimization set to performance (uses a five-stage pipeline).
Moreover, it includes the peripherals described on subsection 4.2.

The same configuration has been used to generate the DTB file
for launching the QEMU MicroBlaze. However, on the emulated
MicroBlaze, apart from the already mentioned peripherals, an AXI
Timer and an AXI Interrupt Controller are needed in order to be
able to generate the DTS files. The boot image, First Stage Boot
Loader (FSBL) binary and u-boot binary on the Ubuntu distribu-
tion have been replaced by the boot.bin file generated on XSDK
using the FSBL binary and the u-boot binary for our specific Vi-
vado project.

The target source code that runs on the real and emulated Mi-
croBlaze has been compiled whit the same MicroBlaze GCC (mb-
gcc) without any optimization (-O0).

5.2 Evaluation process and results
To get the results, every benchmark has been executed 16383

times on the real and emulated MicroBlaze (without relaunching
QEMU, so that we take advantage of translated code caching) and
timing data has been collected. Together with the executed WCET
benchmarks, an empty application has also been analyzed. Run-
ning the empty application provided a way to measure the tim-
ing overhead introduced by the underlying system, composed of
QEMU and Linux PREEMPT_RT.

In order to solve scaling problems, result have been clustered into
5 different graphs. These graphs show a comparison between the
emulated and real execution time average value and 98%-quantile.
The standard deviation is represented as an error bar on the average
value. When analyzing the results, benchmarks should be classified
into two groups according to the ratio between computation com-
plexity and control flow statements. We have selected benchmarks
which are mainly composed of conditional statements and contain
simple computations (e.g., array search, binary search, bubblesort,
compress, duff, faculty, janne complex, statemate, switch, ud), and
benchmarks with complex computations and few control flow state-
ments (e.g., crc, dctint, dhrystone, edn, fft, insertsort, lms, ludcmp,
matmult, ndes, petrinet, prime, qsort, qurt, select, sqrt, statistics).
The former group is expected to run faster on the real MicroBlaze,
since control flow statements hinder TB chaining on QEMU and
simple computations do not take advantage of the new and more
powerful host architecture. Whereas the latter group, is expected
to run faster on the emulated MicroBlaze, because the host archi-
tecture can handle better complex computations and the absence
(or low amount) of control flow statements supports efficient TB
chaining.

As shown in Figure 4, four of the analyzed benchmarks (bi-
nary search, bubblesort, insertsort and switch) have shorter execu-
tion times when running on the real MicroBlaze (avg real) than
the timing overhead of the emulation environment itself (empty
benchmark avg emulated). According to the empty benchmark, the
emulation environment introduces a timing offset of almost 10us.
Therefore, it is impossible that these benchmarks run faster on the
emulated MicroBlaze than on the real one.

Figures 5, 6, 7 and 8 show the timing results of the benchmarks
that are above the empty application emulation threshold. Further
analysis should be done on the timing behavior of array search,
dctint and fft benchmarks. Despite containing complex computa-
tions in their algorithms, dctint and fft benchmarks run faster on
the real MicroBlaze than on the emulated one. The main reason
behind this behavior might reside on the intensive cache use of

10
87

3,
95

99
56

,0
9

10
69

5,
29

14
55

6,
88

20
26

4,
09

98
0

11
44

,0
7

57
00

30
00

,0
8

93
40

11
69

7

10
57

8,
54

11
31

9,
54 15

60
6

21
04

5

98
0

11
40

57
00

30
00

93
40

0,00

5000,00

10000,00

15000,00

20000,00

25000,00

30000,00

empty insertsort binarySearch bubblesort switch

NRT

Ti
m

e
(n

s)

avg emulated avg real 98quant emulated 98quant real

Figure 4: Timing results of benchmarks below the empty applica-
tion emulation threshold. These benchmarks can not overtake the
timing offset introduced by the emulation environment.

55
92

3,
70

29
19

99
,3

0

29
97

29
,1

1

15
20

5,
07

35
78

0,
54

10
48

43
,2

4

11
54

47
,5

2

33
76

67
,7

7

37
02

49
,5

7

14
06

0

23
94

0

17
52

057
48

9,
54

32
54

61
,2

4

33
01

13
,7

15
86

7,
54

38
40

4,
86

13
10

19
,9

11
53

40

33
76

60 37
04

20

14
06

0

23
94

0

17
52

0

0,00

50000,00

100000,00

150000,00

200000,00

250000,00

300000,00

350000,00

400000,00

crc qsort select janneComplex faculty duff

RT SRT NRT

Ti
m

e
(n

s)

avg emulated avg real 98quant emulated 98quant real

Figure 5: Timing results of benchmarks above the empty applica-
tion emulation threshold (Cluster 1). The proposed solution could
provide hard RT performance for crc, qsort and select benchmarks
and soft RT performance for janneComplex and faculty.

these benchmarks and the more frequent cache misses on the ARM
platform. Even though we expected array search would run faster
on the real MicroBlaze, since it contains simple computations and
many conditional statements, it runs faster on the emulated Mi-
croBlaze. This could be, because the nested loops on the bench-
mark can be resolved by QEMU TB chaining infrastructure.

According to the results, the proposed solution could provide
hard RT performance for 55% of the benchmarks. These are the
benchmarks marked as RT in the figures, which run faster on the
emulated hardware than on the real one. Whereas, soft RT perfor-
mance could be provided for 74% of the benchmarks. This value
corresponds to the benchmarks marked as SRT, which run almost
as fast on the emulated hardware as on the real MicroBlaze. Obvi-
ously, the 74% value contains the RT and SRT benchmarks. Thus,
the non RT benchmarks represent 26%.

6. CONCLUSIONS AND FUTURE WORK
The current research work aimed to study the feasibility of a dy-

namic code translation for RT legacy binaries. In our feasibility
study, QEMU has been adapted to run a Xilinx MicroBlaze emula-
tor on a Xilinx Zynq ARM processor and has been modified to per-

19
30

23
,6

0

68
66

88
,7

2

17
77

37
5,

49

49
44

22
,2

7

86
21

79
,4

9

51
11

45
,7

0

17
49

87
3,

40

74
15

60

18
84

41
0,

35

20
44

96
0

47
66

20 70
49

80

43
82

0

60
08

60

22
30

15
,0

8

71
45

52
,6

6

18
43

08
1,

86

52
61

13
,5

4 89
13

97
,0

8

54
27

43
,0

8

17
83

45
0,

86

74
15

60

18
84

32
0

20
44

96
0

47
66

20 70
49

80

43
82

0

60
08

60

0,00

500000,00

1000000,00

1500000,00

2000000,00

2500000,00

arraySearch ndes petrinet ud dctint statemate compress

RT SRT NRT

Ti
m

e
(n

s)

avg emulated avg real 98quant emulated 98quant real

Figure 6: Timing results of benchmarks above the empty applica-
tion emulation threshold (Cluster 2). The proposed solution could
provide hard RT performance for arraySearch, ndes and petrinet
benchmarks and soft RT performance for ud and dctint.

35
67

03
2,

94

35
71

02
0,

81

36
90

52
5,

97

72
89

94
7,

06

16
87

88
31

,1
3

31
61

07
82

,7

15
35

36
59

,5
7

39
32

08
0

39
23

58
0

44
70

36
0

84
51

86
0

18
94

62
90

,6
6

35
39

68
40

14
99

97
60

36
00

89
6,

4

36
34

88
5,

38

37
63

45
3,

62

73
84

26
5,

46

17
12

63
05

,7
4

31
84

95
79

,0
2

15
58

74
36

,1
2

39
32

08
0

39
23

58
0

44
70

36
0

84
51

86
0

19
01

61
27

,2

35
39

68
40

14
99

97
60

0,00

5000000,00

10000000,00

15000000,00

20000000,00

25000000,00

30000000,00

35000000,00

40000000,00

prime sqrt qurt Iudcmp edn matmult fft

RT SRT

Ti
m

e
(n

s)

avg emulated avg real 98quant emulated 98quant real

Figure 7: Timing results of benchmarks above the empty applica-
tion emulation threshold (Cluster 3). The proposed solution could
provide hard RT performance for prime, sqrt, qurt, ludcmp, edn and
matmult benchmarks and soft RT performance for fft.

form timing measurements. Afterward, a WCET benchmark suite
has been executed on the emulated target and a bare-metal MicroB-
laze target. From the experimental result analysis, we conclude that
QEMU could be a feasible path for pure functional soft RT legacy
code block migration. It is a machine-adaptable solution and sup-
ports full system emulation, moreover new embedded devices can
easily be added to the system.

As already mentioned in the introduction, this work described
early results. Future work considers analysis of the caching be-
havior inside QEMU (TB cache tracing) and on the Linux plat-
form through available performance counters. This will enable a
much better observability and interpretation of the influence of the
QEMU and Linux caching effect on the execution time of emulated
applications. Furthermore, I/O and interrupt virtualization (already
supported by QEMU) will be considered to establish the required
periodic schedule for the class of targeted reactive real-time sys-
tems in conjunction with a more realistic industrial case-study. Last
but not least, the integration of multiple emulated processors, run-
ning together on a multi-core host processor, shall be addressed.
Such a complex integration scenario could then be further extended

63
08

64
19

1,
6

85
17

36
17

2,
2

11
03

01
99

80

76
30

23
74

0

94
14

92
05

6

14
52

80
12

00

63
19

80
82

8,
1

93
60

92
59

7,
9

11
05

93
73

48

76
30

23
74

0

10
25

22
81

38

14
52

80
12

00

0

200000000

400000000

600000000

800000000

1E+09

1,2E+09

1,4E+09

1,6E+09

statistics Ims dhrystone

RT

Ti
m

e
(n

s)

avg emulated avg real 98quant emulated 98quant real

Figure 8: Timing results of benchmarks above the empty appli-
cation emulation threshold (Cluster 4). The proposed solution
could provide hard RT performance for statistics, lms and dhrys-
tone benchmarks.

into a mixed emulated legacy and non-emulated non-legacy code
integration under consideration of (soft) real-time constraints.

Acknowledgment
The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 687902 (SAFEPOWER).

The authors would like to thank Xabier Ormaetxea and Philipp
Ittershagen for their support on the research described on this pub-
lication.

References
[1] J. Baiocchi, B. R. Childers, J. W. Davidson, J. D. Hiser, and

J. Misurda. Fragment cache management for dynamic binary
translators in embedded systems with scratchpad. In Proceed-
ings of the 2007 international conference on Compilers, ar-
chitecture, and synthesis for embedded systems, pages 75–84.
ACM, 2007.

[2] J. A. Baiocchi and B. R. Childers. Heterogeneous code cache:
using scratchpad and main memory in dynamic binary trans-
lators. In Design Automation Conference, 2009. DAC’09.
46th ACM/IEEE, pages 744–749. IEEE, 2009.

[3] J. A. Baiocchi, B. R. Childers, J. W. Davidson, and J. D. Hiser.
Reducing pressure in bounded dbt code caches. In Proceed-
ings of the 2008 international conference on Compilers, ar-
chitectures and synthesis for embedded systems, pages 109–
118. ACM, 2008.

[4] F. Bellard. Qemu, a fast and portable dynamic translator.
In USENIX Annual Technical Conference, FREENIX Track,
pages 41–46, 2005.

[5] K. Bennett. Legacy systems: Coping with success. IEEE
software, 12(1):19–23, 1995.

[6] A. B. Bergh, K. Keilman, D. J. Magenheimer, and J. A. Miller.
Hp-3000 emulation on hp precision architecture computers.
Hewlett-Packard Journal, 38(11):87–89, 1987.

[7] G. Blake, R. G. Dreslinski, and T. Mudge. A survey of
multicore processors. IEEE Signal Processing Magazine,
26(6):26–37, 2009.

[8] J.-Y. Chen, W. Yang, T.-H. Hung, H.-M. Su, and W.-C. Hsu.
A static binary translator for efficient migration of arm-based
applications. In Workshop on Optimizations for DSP and Em-
bedded Systems. Citeseer, 2008.

[9] C. Cifuentes and M. V. Emmerik. Uqbt: adaptable binary
translation at low cost. Computer, 33(3):60–66, 2000.

[10] C. Cifuentes and V. Malhotra. Binary translation: static, dy-
namic, retargetable? In 1996 Proceedings of International
Conference on Software Maintenance, pages 340–349, 1996.

[11] B. Cogswell and Z. Segall. Timing insensitive binary to bi-
nary translation of real time systems. In Workshop on Archi-
tectures for Real-Time Applications, ISCA, 1995.

[12] A. Guha, K. Hazelwood, and M. L. Soffa. Reducing exit stub
memory consumption in code caches. In International Con-
ference on High-Performance Embedded Architectures and
Compilers, pages 87–101. Springer, 2007.

[13] A. Guha, K. Hazelwood, and M. L. Soffa. Memory opti-
mization of dynamic binary translators for embedded sys-
tems. ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 9(3):22, 2012.

[14] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The
Mälardalen WCET benchmarks – past, present and future. In
B. Lisper, editor, WCET2010, pages 137–147, Brussels, Bel-
gium, July 2010. OCG.

[15] T. Heinz. Preserving temporal behaviour of legacy real-time
software across static binary translation. In Proceedings of
the 1st workshop on Isolation and integration in embedded
systems, pages 1–4. ACM, 2008.

[16] Y.-S. Hwang, T.-Y. Lin, and R.-G. Chang. Disirer: Convert-
ing a retargetable compiler into a multiplatform binary trans-
lator. ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 7(4):18, 2010.

[17] C. May. Mimic: a fast system/370 simulator, volume 22.
ACM, 1987.

[18] B.-Y. Shen, J.-Y. Chen, W.-C. Hsu, and W. Yang. Llbt: an
llvm-based static binary translator. In Proceedings of the 2012
international conference on Compilers, architectures and syn-
thesis for embedded systems, pages 51–60. ACM, 2012.

[19] S. R. Tilley and D. Smith. Perspectives on legacy system
reengineering, 1995.

[20] D. Ung and C. Cifuentes. Machine-adaptable dynamic binary
translation. In ACM SIGPLAN Notices, volume 35, pages 41–
51. ACM, 2000.

[21] C. Wagner and C. Wagner. Model-Driven Software Migration.
Springer, 2014.

[22] M. Wahler, R. Eidenbenz, C. Franke, and Y. A. Pignolet. Mi-
grating legacy control software to multi-core hardware. In
Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on, pages 458–466, 2015.

[23] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, D. OŠSul-
livan, and R. Richardson. Legacy system migration: A legacy
data migration engine. In Proceedings of the 17th Interna-
tional Database Conference (DATASEM’97), pages 129–138,
1997.

[24] Y. Yang, H. Guan, E. Zhu, H. Yang, and B. Liu. Crossbit: a
multi-sources and multi-targets dbt, 2010.

XXXII

Design Space Pruning and
Computational Workload Splitting
for Autotuning OpenCL
Applications

XXXIII

Design Space Pruning and Computational Workload
Splitting for Autotuning OpenCL Applications

Ahmet Erdem Davide Gadioli

Gianluca Palermo Cristina Silvano

Department of Electronics, Information and Bioengineering
Politecnico di Milano

e-mail: name.surname@polimi.it

ABSTRACT
Recently, OpenCL standard reached much wider audiences
due to the increasing number of devices supporting it. At
the same time, we have observed an increase of differences
among devices that support OpenCL. This situation offers
to developers, who want to get high performance, a large
spectrum of platforms. Given the additional OpenCL plat-
form parameters alongside application specific parameters,
the design space for exploration is seriously large. Further-
more, availability of more than one kind of device allows
distribution of computation on the heterogeneous platform.
Automatic design space exploration frameworks are one of
the recent approaches to address these problems and to re-
duce the burden of programmers. In this work, we present
our automatic and efficient technique to prune the design
space before moving on to the exploration phase and we
propose a new method for splitting the computational tasks
to computing devices on heterogeneous platforms.1

1. INTRODUCTION
The recent advances in computer architecture made het-

erogeneous computer systems available to not only data cen-
ters and supercomputers, but also to commercial personal
computers. Especially, with the advent of AMD APUs and
Intel CPUs which include integrated GPUs, the heterogene-
ity of modern machines has increased. Furthermore, en-
abling discrete GPUs for general purpose computing has
added another type of computation device to the system.
While each system has provided different granularity of par-
allelism which needs to be properly exploited, the commu-
nication between various computation devices must also be
handled according to the requirements of application as well.

1This work is partially funded by the EU H2020 FET-HPC
program under grant 671623 ANTAREX.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RAPIDO, January 22–24, 2018, Manchester, United Kingdom
c© 2018 ACM. ISBN 978-1-4503-6417-1/18/01. . . $15.00

DOI: https://doi.org/10.1145/3180665.3180669

Open Computing Language (OpenCL), maintained by the
Khronos consortium [4], is an open standard for developing
parallel applications on heterogeneous systems by abstract-
ing the underlying compute machine. OpenCL adopts data
parallel approach by describing the parallel computations as
a group of work-items, named work-groups. In this hierar-
chical mechanism, a kernel function is executed in parallel
by each work-item in the work-group. A kernel function de-
scribes how each work-item defines the operations carried
out on a single data. Therefore, the collection of work-items
under all work-groups together expresses the data paral-
lelism for an application. Although OpenCL guarantees that
the execution of the application is portable between the de-
vices conforming the OpenCL standard, it does not guaran-
tee the performance to be optimal. Especially, moving ap-
plications to different types of architectures like from CPU
to GPU may result significant loss of performance. This
is the reason why OpenCL is not considered performance
portable. Heterogeneous platforms performance portability
represents a challenging research issue.

One naive solution to performance portability is to de-
velop separate kernel functions for each device the applica-
tion is supposed to run. This solution makes development
of application dramatically complicated when the system is
heterogeneous, because of explicit management of multiple
command queues and contexts in the presence of multiple
vendors on the system. Moreover, this approach has more
design flaws:

• The application developer must have knowledge of all
the device’s architectures.

• The application must be manually split between exist-
ing devices on the platform.

• The developer should have access to all the devices in
order to test and profile on them.

• The number of devices targeted by the application is
limited, consequently future architectures are impos-
sible to target in a performance optimal way without
modifying the application code.

The performance portability problem of OpenCL appli-
cations has been approached either by tuning significant
parameters as described in [6] or by introducing Domain-
specific languages to annotate kernel, to generate more spe-
cialized OpenCL code[2].

From another perspective, it is not always possible to ac-
cess these parameters to tune if they are not being exposed
by developers. The work of [1] tackles this problem by co-
alescing work-groups using compiler transformations while
preserving the correctness of application.

In Glinda framework presented by [8], a specific appli-
cation with possible imbalanced workload is analyzed and
used as a case study for their load balancing and autotuning
framework.

Sharing similar vision with [8], Alok Prakash et al. demon-
strate in their work [7] how they approached the problem of
utilization of heterogeneous computing platform on an em-
bedded device.

The open source library named Maestro [9], which is in-
troduced by Kyle Spafford et al., employs autotuning tech-
niques to find optimal work-group size and load balancing
between multiple devices on heterogeneous platforms.

Similarly, in the work of [3], adaptive ways of selecting
faster architecture using source-to-source polyhedral com-
piler explored. Concurrent runs on devices are not used to
accelerate the execution, but rather to use the fastest device
that finishes the execution.

In this work, we introduce an automation of extraction of
OpenCL platform parameters and usage of the information
that are gathered to aid the tuning process. Furthermore, we
propose a new method to split the computational workload
to different OpenCL devices on heterogeneous systems.

2. PROPOSED METHODOLOGY

2.1 Parameter Space Pruning
The procedure of autotuning an OpenCL application in

order to get optimum performance without any concerns
of the underlying architecture of the platform, requires a
set of parameters that define characteristics of the machine.
In the case of OpenCL, these platform specific parameters
are stated by the OpenCL standard itself. Furthermore,
it is possible to gather them using the querying framework
which is provided by the OpenCL standard. With these
information gathered, it is possible to determine the size of
the exploration space and then using intelligent methods for
searching optimum design space.

Besides platform parameters, there might be also applica-
tion specific parameters that are tightly related to platforms
capabilities. An example of this situation is the well-known
tiled version of the matrix multiplication. The size of the
tiles are considered as application parameters and due to
nature of the algorithm there is a sharing of information
between work-items on the elements of the same tile. Due
to OpenCL architecture design, this kind of communication
requires local memory to be used. Therefore, tile size is
directly related to local memory usage which is a limited
resource of the platforms.

There are some problems related to searching for the op-
timum configuration, design space is larger for even simple
applications. For instance, Nvidia Fermi architecture has
limitations on work-group sizes for each dimension allowing
up to 1024 work-items for first and second data-dimensions,
while 64 work-items for the third dimension, resulting in 226

different configurations. Most of these configurations are not
feasible (e.g. the total number of work-items may exceed de-
vices capabilities), in the sense that the kernel may not even
launch or may fail during execution, due to unfeasible con-

Figure 1: Design Space Pruning

figurations parameters. Moreover these failed attempts of
kernel launches do not provide any information about the
sample that has been taken from design space. Hence, effort
and time are wasted on these unfeasible configurations.

To address this issue, the work in [6] presented a design
space exploration flow that includes constraint programming
to prune the design space and eliminate unfeasible solutions.
This helps the reduction of the design space. Moreover, it
only uses configurations which make sense within the scope
of OpenCL standard. Fig. 1 demonstrates this idea. Con-
straint Solver shown in Figure 1, eliminates the samples
which do not comply with the constraints from the design
space. And as output of the solver, a pruned design space is
generated such that all configuration samples are compliant
with the constraints.

Our work aims at improving the pruning phase by au-
tomating the extraction of platform specifications, to find
constraints that are valid for all the OpenCL devices in
the target system. Therefore, application programmer only
needs to insert constraints related to application itself. For
constraint programming, we use the MiniZinc [5] constraint
modelling language. Using clGetDeviceInfo function pro-
vided by OpenCL querying framework, for each OpenCL
compliant device available on the machine we generate MiniZ-
inc data files which include the following information about
the device:

• maximum work-group size for each dimension.

• maximum total number of work-groups considering all
dimensions.

• number of compute units on the device.

• local memory size of the device.

In addition to these device parameters, a set of constraints
that can be deduced from the rules defined by the standard
[4], has been used to generate platform constraint model
using MiniZinc constraint programming language. Thus,
together with application constraints provided by program-
mer, it is possible to prune the design space effectively. The
generated platform constraint model contains the following
rules:

• The total number of work-groups launched must be
less than or equal to maximum work-group size.

workgroupx ∗workgroupy ∗workgroupz <= max total wg
(1)

Figure 2: The proposed methodology

• Each global work-item dimensions must be multiple of
corresponding work-group dimension size.

globalx%workgroupx == 0

globaly%workgroupy == 0

globalz%workgroupz == 0

(2)

• The total number of work-groups should be equal or
greater than number of compute units. Otherwise,
there will be idle compute units.

globalx/workgroupx + globaly/workgroupy+

globalz/workgroupz >= num compute units
(3)

Using both constraints coming from platform specifica-
tions and application domain, the total design space will be
reduced to a collection of configurations that satisfy these
constraints. This will reduce the exploration of the space,
which is crucial for the next phase.

2.2 Computational Workload Splitting
Heterogeneous computing architectures are widely adopted,

thus being able to utilize this heterogeneity is crucial for
achieving higher performance systems. Therefore, in this
work we propose a new method that splits huge OpenCL
computing kernels into smaller chunks. Then it maps those
partial computations to different devices in order to make
use of all the existing OpenCL devices.

Since the development of OpenCL framework has been
inspired from GPUs, which have been conceived for data-
parallel computing, we are focusing on data-parallel com-
putations by using the NDRange functionality of OpenCL
framework. When using NDRange, it is possible to launch
kernels on an iteration space where each iteration processes
one element of a set of data. The goal is to be able to prune
that iteration space and distribute the portions of it to the
available devices in a efficient manner.

To achieve this goal, we should address the following is-
sues:

• It is required the performance knowledge of a kernel
on each device of the heterogeneous platform in order
to find the right split point.

• After splitting, the chosen work-group sizes may be-
come ill-advised for kernel execution.

In order to find a balanced splitting point, we needed per-
formance information of the target kernel on each device. To
acquire this information, we measured execution time of the
remaining configurations after parameter space pruning de-
scribed in Section 2.1. After the exploration, the candidate

Figure 3: Global work space splitting

configurations with the lowest execution time for each device
are chosen for splitting decision. In Figure 2, the proposed
methodology has been shown to give high level perspective.

First, execution times are converted to speed values for
each device by taking multiplicative inverse. Then, these
speed values are used for calculating split factors for each
device using Equation 4; where split factori is the split fac-
tor of ith device and N is the number of devices.

split factori = exe speedi/(

N−1∑

j=0

exe speedj)

where i = 0, . . . , N − 1s

(4)

Since split factors define how much computation will take
place in each OpenCL device, the sum of all the split factors
must be equal to 1.0. Otherwise, there would be residue
computation that is missing from the output of the task. It
is fairly easy to observe that

∑N−1
i=0 split factori = 1.0 is

satisfied by substituting split factori by the Equation 4.
While split factors are calculated from performance mea-

surements to give good hints about how to load balance
between different devices in heterogeneous environments, di-
viding the global work sizes using a generic split factors, may
easily result in partitions with fractional work sizes which
are invalid for the OpenCL standard.

For instance, let us consider a global work size of 512 work-
items and split factors of 0.4 and 0.6 for the two devices. In
this case, the share of device 1 would be 204.8 work-items
while device 2 has a share of 307.2 work-items. Because the
concept of work-items is intrinsically indivisible, the split-
ting factors are impractical.

Moreover, it is important to keep the optimum work-group
sizes found by exploration for each device, since the perfor-
mance is strongly related to work-group sizes. This situation
is problematic because different devices usually have differ-
ent optimal work-group sizes. In [7], a single work-group
size has been used for both GPU and CPU. In contrast, this
work introduces a new technique to overcome this limitation
by adjusting the splitting factors minimally while taking into

account the optimal work-group sizes discovered in the ex-
ploration phase.

Equation 5 defines the global work size. where wgi is the
work-group size and γi is the number of work-groups for ith

device. For simplicity, it only considers one dimension of the
iteration space. Moreover, it can be extended for the multi-
dimensional case, since splitting operation can be applied to
each dimension separately.

G =

N−1∑

i=0

wgi ∗ γi (5)

The number of work-groups that are needed for each de-
vice is calculated using devices’ optimal work-group sizes
and splitting factor Si (Eq. 6).

γi =
G ∗ Si

wgi
(6)

It is important to note that at this stage, the numbers of
work-groups γi are real values, hence OpenCL framework
will not launch successfully. To deal with this issue, the
number of work-groups are reduced to an integer number
for all devices (Eq. 7).

γ̂i = bγic (7)

With the integer number of work-groups γ̂i, the splitting
factors are recalculated (Eq. 8a) in order to find the residue
(Eq. 8b).

Ŝi =
wgi ∗ γ̂i
G

(8a)

SR =

N−1∑

i=0

Si −
N−1∑

j=0

Ŝj (8b)

Having a leftover part of the computation (G ∗ SR), we
determine how much work each device needs to process, in
order to compute residue (Eq. 9a and Eq. 9b). Then we
choose the device that requires the minimum amount of work
to cover the remaining computations.

γ̃i = dG ∗ SR

wgi
e (9a)

S̃i =
wgi ∗ γ̃i
G

, (9b)

Using this method, it is possible to preserve the desired
work-group sizes while adjusting split factor minimally. We
achieve this by reducing the number of work-groups conser-
vatively per device, then choosing the appropriate device for
the residue work to be computed on. An example of split-
ting and partitioning of global work space into work-groups
is illustrated in Figure 3.

An interesting feature of this method is that, when work-
group sizes of devices are not multiple of each other, there
will be overlap between the partitions of data that are com-
puted on devices. However the redundant computations will
be minimum due to choice of the device which requires least
amount of work for residue. In case the work-group sizes
are multiple of each other, there will be no overlap at all.
This outcome is observed because when work-group sizes are

Algorithm 1 Calculates the best theoretical performance

function TheoreticalHeteroPerf(splitFactors, exe-
Times)

devicePerfs ← empty list
i← 0
while i < number of devices present do

devicePerfs[i] ← splitFactors[i] * exeTimes[i]

return max(devicePerfs)

multiple of each other, larger work-groups can perfectly be
accommodated by smaller work-groups.

Figure 4 shows the details of the splitting phase. In this
phase, we also measure how well the methodology stands
against theoretically best-case performance. After calcula-
tion the best split location, the theoretical heterogeneous
performance is calculated using Algorithm 1. The difference
between the calculated performance and the actual hetero-
geneous performance is the overhead of our methodology.

Figure 4: Proposed splitting phase in detailed

3. EXPERIMENTAL SETUP
In order to test our approach, we used two platforms.

Platform 1(PLT1) consists of an Intel i7-4770 quad-core at
3.4Ghz and Intel HD Graphics 4600 with 20 Execution Units.
Platform 2(PLT2) has an Intel i7-2630QM quad-core CPU
at 2.0Ghz and a Nvidia GeForce GT 550M which is a mobile
GPU with 96 CUDA cores.

In order to validate our methodology, we have chosen two
application case studies; one dimensional convolution and
matrix multiplication. Both implementations make use of
local memory provided by OpenCL framework as cache.

Matrix multiplication is implemented as tiled version and
the size of the considered tiles is an application parameter
and it is used to calculate the local memory consumption of
the OpenCL kernel (Eq. 10). As a constraint to the explo-
ration space, we fixed the workgroup sizes equal to the tile
sizes.

local mem = 2× tile size2 (10)

OpenCL version of the convolution operation has been im-
plemented in a fashion that work-items, in the same work-
group, share as much data as possible. This is possible by
using local memory to load all the neighbouring data re-
quired for the whole work-group. Therefore, the number
of work-items, as well as the mask size defined in the con-
volution operation, affects the local memory consumption
according to (Eq. 11).

local mem = workgroup size+mask size− 1 (11)

(a) MatrixMult PLT1 (b) MatrixMult PLT2

(c) Convolution PLT1 (d) Convolution PLT2

Figure 5: Execution times of heterogeneous runs

4. EXPERIMENTAL RESULTS
In this section, we present how much the design space is

reduced by using our methodology. The amount of acceler-
ation achieved due to utilization of both CPU and GPU as
well as the limitations of the techniques that are introduced
is examined. In order to get repeatable outcomes, we eval-
uated all the configurations 10 times and took the mean of
the best five results for all the experiments.

4.1 Design Space Pruning
Without our pruning phase implementation, the required

amount of kernel runs for the explorations are shown in
Table 1. The matrix multiplication used as test case is a
1024x1024 multiplication, while the convolution operation
has a mask size 625 over 216 elements.

The numbers in Table 1, are generated considering only
the dimensions that are used by the kernel. Matrix multipli-
cation has a 2 dimensional iteration space, while convolution
is 1 dimensional in this case. This is the reason behind the
huge difference of the exploration size of the two applica-
tions. In Table 2, the number of feasible configurations that
require evaluation, are dramatically reduced. The amount of
reduction of the space allows us to explore all the remaining
configurations.

4.2 Computation Workload Splitting
Figure 5 shows the theoretical value, execution time of the

heterogeneous evaluations, along with only CPU and only
GPU configurations. For the matrix multiplication case two
different heterogeneous experiments are shown as dim0 and

Table 1: Exploration space size without pruning
PLT1 PLT2

CPU GPU CPU GPU

Matrix Mult. 220 218 220 220

Convolution 8192 512 8192 1024

Table 2: Exploration space size after pruning
PLT1 PLT2

CPU GPU CPU GPU
Matrix Mult. 7 5 7 6
Convolution 24 17 24 19

dim1 in Figure 5. It is important to notice that on PLT1
the GPU is an integrated GPU and on PLT2 the GPU is
a mobile variant. Moreover, both CPUs and GPUs use the
same kernel with parameters tuned to the specific device.
For all the execution types, we show the configuration with
the minimum execution time among the explored ones.

We may observe that the performance differences between
the CPU and the GPU on PLT1 lead to less than 15% im-
provement for the two cases. Even the theoretical value does
not suggest much better speed up (Fig. 5a, Fig. 5c). Con-
trarily, on PLT2 with matrix multiplication and convolution
applications, there is a 54% and a 68% speed up respectively
(Fig. 5b, Fig. 5d).

We have also investigated the effect of kernel data split-
ting on different dimensions of the iteration space. In order

Table 3: Data split factors (CPU,GPU)
PLT1 PLT2

Adjusted Optimal Adjusted Optimal
MatMul. (0.762, 0.238) (0.75, 0.25) (0.55, 0.45) (0.5, 0.5)
Conv. (0.814, 0.186) (0.812, 0.188) (0.45, 0.55) (0.45, 0.55)

Figure 6: Split Factor Evaluations(Convolution,
PLT1)

to test it, splitting technique has been applied to both di-
mensions (dim0, dim1) of matrix multiplication. According
to the experiment results, there is no significant improve-
ments for this case study due to the symmetric distribution
of the workload.

Table 3 shows the calculated optimal split factors and
split factors that are adjusted according to optimal work-
group sizes explored. For each case, the first value is the
computational share of CPU and second one is the share
of GPU. It is important to note that for all cases, it sums
up to 1.0, meaning that the computation covers all the it-
erations space. Overall, the difference between the optimal
split point and the split point adjusted by our methodology
is smaller in convolution application, due to the fact that
the size of the work-groups are much smaller compared to
global work size. This situation provides much a finer gran-
ularity when adjusting the splitting point, therefore leading
to closer to optimal splitting. In contrast to this, the ma-
trix multiplication work-group sizes are not as insignificant
to the global work size as convolution, although differences
between the adjusted and the optimal are still limited.

In order to further evaluate our methodology, we tried
different split points to compare with our split point calcu-
lation (Fig. 6, Fig. 7). The splitting factor, indicated with a
circle, is the factor computed by our method. On Platform
2 it is obvious that our splitting factor is the balancing point
between the two devices. While it is also the case on Plat-
form 1, the shape of the graph indicates the performance gap
between two computing devices used on the platform. Ad-
ditionally, the difference between the calculated execution
times (dashed blue line) and the explored execution times
(solid green line) is the overhead of the technique we intro-
duced. This overhead includes adjustment of splitting point
and runtime management of multiple OpenCL devices.

5. CONCLUSION & FUTURE WORK
The contribution of this work is twofold. The first con-

tribution is a more automatic way of collecting and using
OpenCL parameters as an improvement on [6]. Secondly,
a new technique on how to split data between OpenCL de-
vices while respecting work-group sizes has been introduced.
Compared to [7], it is not required to have the same work-

Figure 7: Split Factor Evaluations(Convolution,
PLT2)

group sizes for all the devices. Removing this limitation
enables the usage of better suited work-group sizes for each
device.

Experimental results have shown that it is possible to sig-
nificantly reduce exploration space and moreover by utilizing
all the devices available on the heterogeneous platform, our
methodology improves the performance.

6. REFERENCES
[1] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale.

Towards transparently tackling functionality and
performance issues across different opencl platforms. In
In proceedings of the Second International Symposium
on Computing and Networking - Across Practical
Development and Theoretical Research (CANDAR
2014), Dec. 2014.

[2] N. Chaimov, B. Norris, and A. Malony. Toward
multi-target autotuning for accelerators. In Parallel and
Distributed Systems (ICPADS), 2014, pages 534 – 541.

[3] J.-F. Dollinger and V. Loechner. Adaptive runtime
selection for gpu. In Proceedings of the 2013 42Nd
International Conference on Parallel Processing, ICPP
’13, pages 70–79, Washington, DC, USA, 2013. IEEE
Computer Society.

[4] Khronos Group. The open standard for parallel
programming of heterogeneous systems. [Online;
Accessed: Nov. 2015].

[5] MiniZinc. Medium-level constraint modelling language
minizinc. [Online; Accessed: Dec. 2015].

[6] E. Paone, F. Robino, G. Palermo, V. Zaccaria,
I. Sander, and C. Silvano. Customization of OpenCL
applications for efficient task mapping under
heterogeneous platform constraints. In Proceedings of
the 2015 Design, Automation & Test in Europe
Conference & Exhibition, pages 736–741, 2015.

[7] A. Prakash, S. Wang, A. E. Irimiea, and T. Mitra.
Energy-efficient execution of data-parallel applications
on heterogeneous mobile platforms. In Computer
Design (ICCD), 2015 33rd IEEE International
Conference on, pages 208–215. IEEE, 2015.

[8] J. Shen, A. L. Varbanescu, H. Sips, M. Arntzen, and
D. G. Simons. Glinda: a framework for accelerating
imbalanced applications on heterogeneous platforms. In
Proceedings of the ACM International Conference on
Computing Frontiers, page 14. ACM, 2013.

[9] K. Spafford, J. Meredith, and J. Vetter. Maestro: Data
Orchestration and Tuning for OpenCL Devices, pages
275–286. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

XL

Compile-Time Silent Store
Elimination for Energy Efficiency :
an Analytic Evaluation for
Non-Volatile Cache Memory

XLI

Compile-Time Silent-Store Elimination for Energy
Efficiency: an Analytic Evaluation for Non-Volatile Cache

Memory

Rabab Bouziane
Univ Rennes, Inria, CNRS,

IRISA
Campus de Beaulieu, 35042

Rennes Cedex, France
first.last@inria.fr

Erven Rohou
Univ Rennes, Inria, CNRS,

IRISA
Campus de Beaulieu, 35042

Rennes Cedex, France
first.last@inria.fr

Abdoulaye Gamatié
CNRS, LIRMM, Univ.

Montpllier
191 rue Ada, 34095
Montpellier,France

first.last@lirmm.fr

ABSTRACT
Energy-efficiency has become very critical in modern high-
performance and embedded systems. In on-chip systems,
memory consumes an important part of energy. Emerg-
ing non-volatile memory (NVM) technologies, such as Spin-
Transfer Torque RAM (STT-RAM), offer power saving op-
portunities, while they suffer from high write latency.

In this paper, we propose a fast evaluation of NVM in-
tegration at cache level, together with a compile-time ap-
proach for mitigating the penalty incurred by the high write
latency of STT-RAM. We implement a code optimization in
LLVM for reducing so-called silent stores, i.e., store instruc-
tion instances that write to memory values that were already
present there. This makes our optimization portable over
any architecture supporting LLVM. Then, we assess the pos-
sible benefit of such an optimization on the Rodinia bench-
mark suite through an analytic approach based on param-
eters extracted from the literature devoted to NVMs. This
makes it possible to rapidly analyze the impact of NVMs on
memory energy consumption. Reported results show up to
42 % energy gain when considering STT-RAM caches.

Keywords
Silent stores, LLVM compiler, energy-efficiency, non volatile
memory, embedded systems

1. INTRODUCTION
Memory system plays a very important role in perfor-

mance and power consumption of computing devices. Pre-
vious work already pointed out that the energy related to
the cache hierarchy in a system can reach up to 40% of the
overall energy budget of corresponding chip [8]. As technol-
ogy scales down, the leakage power in CMOS technology of
the widely used SRAM cache memory increases, which de-
grades the system energy-efficiency. Existing memory sys-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RAPIDO, January 22–24, 2018, Manchester, United Kingdom
c© 2018 ACM. ISBN 978-1-4503-6417-1/18/01. . .15.00

DOI: https://doi.org/10.1145/3180665.3180666

tem management techniques offer various ways to reduce the
related power consumption. For instance, a technology such
as SDRAM has the ability to switch to lower power modes
upon a given inactivity threshold is reached. Further ap-
proaches, applied to embedded systems, deal with memory
organization and optimization [23] [2].

With the increasing concern about energy consumption
in both embedded and high-performance systems, emerging
non-volatile memory (NVM) technologies, such as Phase-
Change RAM (PCRAM), Spin-Transfer Torque RAM (STT-
RAM) and Resistive RAM (RRAM), have gained high at-
tention as they open new power saving opportunities [20].
Indeed, their very low leakage power, makes them good can-
didates for energy-efficiency improvement of computer sys-
tems. NVMs have variable performance, energy and en-
durance properties. For instance, PCRAM and RRAM have
limited endurance compared to usual SRAM and DRAM
technologies. STT-RAM has an endurance property that is
close to that of SRAM, making it an attractive candidate for
cache level integration. Nevertheless, a main limitation of
NVMs at cache level is their high write latency compared to
SRAM. This can be penalizing, especially for write-intensive
workloads, as it leads to performance degradation, with a
possible increase in global energy consumption despite the
low leakage power.

In this paper, we investigate an effective usage of STT-
RAM in cache memory such that its inherent overhead in
write latency can be mitigated for better energy-efficiency.
For this purpose, we revisit the so-called silent store elim-
ination [14], devoted to system performance improvement
by eliminating redundant memory writes. We target STT-
RAM because it is considered as more mature than similar
emerging NVM technologies. Test chips with STT-RAM
already exist [10, 21] and show reasonable performance at
device level compared to SRAM. More generally, the silent
store elimination presented here can be applied to all NVMs
for addressing their asymmetric access latencies. It may
be less beneficial for technologies with less asymmetric ac-
cess latencies, e.g., SRAM. An instance (or occurrence) of a
store instruction is said to be silent if it writes to memory the
value that is already present at this location, i.e., it does not
modify the state of the memory. A given store instruction
may be silent on some instances and not silent on others.
The silentness percentage of a store instruction therefore
characterizes the ratio between its silent and non-silent in-

stances: high silentness therefore means a larger number of
silent store instances.

While silent store elimination has been often developed in
hardware, here we rather adopt a software approach through
an implementation in the LLVM compiler [12]. A high ad-
vantage is that the optimization becomes portable for free,
to any execution platform supporting LLVM: a program is
optimized once, and run on any execution platform while
avoiding silent stores. This is not the case of the hardware-
level implementation. Thanks to this flexible implementa-
tion, we evaluate the profitability of silent store elimination
for NVM integration in cache memory. In particular, we
show that energy-efficiency improvements highly depend on
the the silentness percentage in programs, and on the en-
ergy consumption ratio of read/write operations of NVM
technologies. We validate our approach by exploring this
tradeoff on the Rodinia benchmark suite [4]. Up to 42 % gain
in energy is reported for some applications. The described
validation approach is quite fast and relies on an analytic
evaluation considering typical NVM parameters extracted
from the literature.

In the rest of this paper, Section 2 discusses some related
work. Then, Section 3 describes the general principle and
implementation of our silent store elimination approach at
compile-time. Section 4 applies this approach to the Rodinia
benchmark suite for evaluating possible gains in energy on
different applications. Finally, Section 5 gives concluding
remarks and perspectives to the current work.

2. RELATED WORK
There are a number of studies devoted to energy-efficiency

of NVM-based caches. Smullen et al. [24] investigated an
approach that focuses on technology level to redesign STT-
RAM memory cells. They lower the data retention time in
STT-RAM, which induces the reduction of the write current
on such a memory. This enables in turn to decrease the high
dynamic energy and latency of writes.

Sun et al. [25] proposed a hybrid L2 cache consisting of
MRAM and SRAM, and employed migration based policy
to mitigate the drawbacks of MRAM. The idea is to keep
as many write intensive data in the SRAM part as possible
to reduce the number of write operations to the STT-RAM
part. Hu et al. [9] targeted embedded chip multiprocessors
with scratchpad memory (SPM) and non volatile main mem-
ory. They exploited data migration and re-computation in
SPM so as to reduce the number of writes on main memory.
Zhou et al. in [31] proposed a circuit-level technique, called
Early Write Termination in order to reduce write energy.
The basic idea is to terminate earlier a write transaction
whenever detected as redundant.

Migration-based techniques require additional reads and
writes for data movement, which penalizes the performance
and energy efficiency of STT-RAM based hybrid cache. Li et
al. [18] addressed this issue through a compilation method
called migration-aware code motion. Data access patterns
are changed in memory blocks so as to minimize the over-
head of migrations. The same authors [16] also proposed
a migration-aware compilation for STT-RAM based hybrid
cache in embedded systems, by re-arranging data layout to
reduce the number of migrations. They showed that the
reduction of migration overheads improves energy efficiency
and performance.

We also promote a compile-time optimization by lever-

aging redundant writes elimination on memory. While this
is particularly attractive for NVMs, a few existing works
already addressed the more general question about code
redundancy for program optimization. In [29], the RED-
SPY profiler is proposed to pinpoint and quantify redun-
dant operations in program executions. It identifies both
temporal and spatial value locality and is able to identify
floating-point values that are approximately the same. The
data-triggered threads (DTT) programming model [26] of-
fers another approach. Unlike threads in usual parallel pro-
gramming models, DTT threads are initiated when a mem-
ory location is changed. So, computations are executed
only when the data associated with their threads are mod-
ified. The authors showed that a complex code can ex-
ploit DTT to improve its performance. In [27], they pro-
posed a pure software approach of DTT including a spe-
cific execution model. The initial implementation required
significant hardware support, which prevented applications
from taking advantages of the programming model. The
authors built a compiler prototype and runtime libraries,
which take C/C++ programs annotated with DTT exten-
sions, as inputs. Finally, they proposed a dedicated compiler
framework [28] that automatically generates data-triggered
threads from C/C++ programs, without requiring any mod-
ification to the source code.

While the REDSPY tool and the DTT programming model
are worth-mentioning, their adoption in our approach has
some limitations: the former is a profiling tool that pro-
vides the user with the positions of redundant computations
for possible optimization, while the latter requires a spe-
cific programming model to benefit from the provided code
redundancy elimination (note that the DTT compiler ap-
proach built with LLVM 2.9 is no longer available, and is
not compatible with the latest versions of LLVM). Here, we
target a compile-time optimization in LLVM, i.e., silent store
elimination (introduced at hardware level by [14]), which ap-
plies independently from any specific programming model.
This optimization increases the benefits NVMs as much as
possible, by mitigating their drawbacks.

3. SILENT-STORE ELIMINATION

3.1 General principle
Silent stores have been initially proposed and studied by

Lepak et al. [13]. They suggested new techniques for align-
ing cache coherence protocols and microarchitectural store
handling techniques to exploit the value locality of stores.
Their studies showed that eliminating silent stores helps
to improve uniprocessor speedup and reduce multiproces-
sor data bus traffic. The initial implementation was devised
in hardware, and different mechanisms for store squashing
have been proposed. Methods devoted to removing silent
stores are meant to improve the system performance by re-
ducing the number of write-backs. Bell et al. [1] affirmed
that frequently occurring stores are highly likely to be silent.
They introduced the notion of critical silent stores and show
that all of the avoidable cache write-back can be removed
by removing a subset of silent stores that are critical.

In our study, the silent store elimination technique is lever-
aged at compiler-level for reducing the energy consumption
of systems with STT-RAM caches. This favors portability
and requires no change to the hardware. We remind that
this technique is not dedicated only to STT-RAM but to all

NVMs. Here, STT-RAM is considered due to its advanced
maturity and performance compared to other NVM tech-
nologies. Our approach concretely consists in modifying the
code by inserting silentness verification before stores that
are identified as likely silent. As illustrated in Figure 1, the
verification includes the following instructions:

1. a load instruction at the address of the store;

2. a comparison instruction, to compare the to-be-written
value with the already stored value;

3. a conditional branch instruction to skip the store if
needed.

(a) original code store @x = val
load y = @x
cmp val , y
bEQ next
store @x, va l

next :

load y = @x
cmp val , y
strne @x, va l

(b) transformed code (c) with predication

Figure 1: Silent store elimination: (a) original code stores
val at address of x; (b) transformed code first loads the
value at address of x and compares it with the value to
be written, if equal, the branch instruction skips the store
execution; (c) when the instruction set supports predication,
the branch can be avoided and the store made conditional.

3.2 Some microarchitectural and compilation
considerations

While reducing the cost of cache access, the new instruc-
tions introduced in the above transformation may also in-
cur some performance overhead. Nevertheless, specific (mi-
cro)architectural features of considered execution platforms
play an important role in mitigating this penalty.

Superscalar and out-of-order (OoO) execution capabili-
ties are now present in embedded processors. For example,
the ARM Cortex-A7 is a (partial) dual-issue processor. In
many cases, despite the availability of hardware resources,
such processors are not able to fully exploit the parallelism
because of data dependencies, therefore leaving empty ex-
ecution slots, i.e., wasted hardware resources. When the
instructions added by our optimization are able to fit in
these unexploited slots, they do not degrade the perfor-
mance. Their execution can be scheduled earlier by the
compiler/hardware so as to maximize instruction overlap.
The resulting code then executes in the same number of
cycles as the original one. This instruction rescheduling is
typical in OoO cores.

On the other hand, instruction predication, e.g., supported
by ARM cores, is another helpful mechanism. The execu-
tion of predicated instructions is controlled via a condition
flag that is set by a predecessor instruction. Whenever the
condition is false, the effect of the predicated instructions is
simply canceled, i.e., no performance penalty. Figure 1 (c)
shows how this helps save an instruction.

At compiler optimization levels, newly introduced instruc-
tion may cause two phenomena.

1. Since the silentness-checking code requires an addi-
tional register to hold the value to be checked, there is

a risk to increase the register pressure beyond the num-
ber of available registers. Additional spill-code could
negatively impact the performance of the optimized
code. We observed that this sometimes happens in
benchmarked applications. This is easily mitigated by
either assessing the register pressure before applying
the silent-store transformation; or by deciding to re-
vert the transformation when the register allocation
fails to allocate all values in registers.

2. It can happen that the load we introduce is redundant
because there already was a load at the same address
before and the compiler can prove the value has not
changed in-between. In this favorable case, our load
is automatically eliminated by further optimization,
resulting in additional benefits. We observed in our
benchmarks that this situation is actually rather fre-
quent.

3.3 Analysis of profitability threshold
Since our approach includes a verification phase consisting

of an extra load (memory read) and compare. This overhead
may be penalizing if the store is not silent often enough.
Therefore, we use pre-optimization process to identify the
silent stores, and especially the “promising” silent stores in
the light of the profitability threshold. Hence, the compila-
tion framework consists of two steps as follows:

1. silent store profiling, based on memory profiling, col-
lects information on all store operations to identify the
silent ones;

2. apply the optimization pass on the stores that are
silent often enough.

From the data cache viewpoint (considered in isolation),
the silent store optimization transforms a write into a read,
possibly followed by a write. The write must occur when the
store happens to not be silent. In the most profitable case,
we replace a write by a read, which is beneficial due to the
asymmetry of STT-RAM. On the contrary, a never-silent
store results in write being replaced by a read and a write.
Thus, the profitability threshold depends on the actual costs
of memory accesses. In terms of energy cost, we want:

αread + (1− Psilent)× αwrite ≤ αwrite
where αX denotes the cost of operation X and Psilent is the
probability of this store to be silent. This is equivalent to:

Psilent ≥ αread
αwrite

Relative costs vary significantly depending on the under-
lying memory technology. Table 1 reports some values from
literature. In our survey, the ratio in energy consumption
between αwrite and αread varies from 1.02× to 75×.

3.4 Implementation
Our compilation process is a middle-end framework. We

focused on the compiler intermediate representation (IR)
shown in Figure 2, where we implemented the silent stores
optimization. While this figure describes a generic decom-
position into basic steps, its instantiation in our case only
contains two LLVM “passes”, as illustrated in Figure 3.

Through the first step, we get information about all store
instructions that are present in a program (note that the

Source NVM parameters Ratio

Wu et al. [30]
Li et al. [16],
[17]

Technology: 45 nm
Read: 0.4 nJ Write: 2.3 nJ

5.75

Li et al. [15] Technology: 32 nm
Read: 174 pJ Write: 316 pJ

1.8

Cheng et al. [5] Technology: not mentioned
High retention
Read: 0.083 nJ Write: 0.958 nJ
Low retention
Read: 0.035 nJ Write: 0.187 nJ

11.5,
5.3

Li et al. [19] Technology: 45 nm
Read: 0.043 nJ Write: 3.21 nJ

75

Jog et al. [11] Technology: not mentioned
Retention time = 10 years
Read: 1.035 nJ Write: 1.066 nJ
Retention time = 1 s
Read: 1.015 nJ Write: 1.036 nJ
Retention time = 10 ms
Read: 1.002 nJ Write: 1.028 nJ

1.03,
1.02,
1.025

Pan et al. [22] Technology : 32 nm
Read: 0.01 pJ/bit Write:
0.31 pJ/bit

31

Table 1: Relative energy cost of write/read in literature

Figure 2: Implementation of the optimization in LLVM

current version of the optimization handles stores on integer
and floating-point data). For that, we insert new instruc-
tions in the IR in front of every store to check whether the
stored valued is equal to the already stored value. If it is
the case, we increment a counter related to this particular
store. Once the first pass is done, we run the application on
representative inputs to obtain a summary reporting how
many times the stores have been executed and how many
times they have been silent. We also save their positions in
the program so that we can identify them in the next pass.
The output of the first pass is a file that contains all the
characteristics of a store as described if Figure 3.

In a second step, where we apply the main part of the
optimization: we compile again the source code, taking into
account the profiling data. For each store instruction whose
silentness is greater than a predefined threshold, we insert
verification code, as described in Section 3.1 and illustrated
in Figure 1.

Figure 3: Design of the compilation framework

By working at the IR level we achieve three goals: 1) the
source code of the application remains unmodified; 2) we
do not need to be concerned by the details of the target
processor and instruction set: the compiler back-end and
code generator will select the best instruction patterns to
implement the code; and 3) our newly introduced instruc-
tions may be optimized by the compiler, depending on the
surrounding code.

4. EVALUATION ON BENCHMARKS
In their seminal 2001 paper [14], Lepak and Lipasti stud-

ied the SPEC95 benchmark suite in which high silentness
percentages have been exposed. For instance, vortex and
m88ksim reach respectively 64 % and 68 % of silent stores
overall on PowerPC architecture (there was no per-store
characterization in that paper). Such silentness levels could
typically benefit from our optimization.

In this section, we present a similar analysis, uncover-
ing silent-stores in applications, and analytically assessing
the impact of our proposal, based on their characteristics.
We study some applications from Rodinia benchmark [4],
cross-compiled for ARM1 and we execute them on a single
core. Rodinia is composed of applications and kernels from
various computing domains such as bioinformatics, image
processing, data mining, medical imaging and physics sim-
ulation. In addition, it provides simple compute-intensive
kernels such as LU decomposition and graph traversal. Ro-
dinia targets performance benchmarking of heterogeneous
systems.

4.1 Distribution of silent stores
The impact of eliminating a given store depends on two

factors: (1) its silentness, i.e. how often this particular store
is silent when it is executed; and (2) how many times this
store is executed (obviously highly silent but infrequently
executed store are not of much interest). We first study the
distribution of silent-stores across applications, and then we

1Here, we choose ARMv7 instruction set architecture (ISA),
e.g., supported by Cortex-A7 and Cortex-A15 cores, for il-
lustration purpose. Further ISAs could be straightforwardly
targeted as well, e.g., X86. This makes our code optimiza-
tion portable on different processor architectures.

Pe
rc

en
ta

ge
 o

f
si

le
nt

 p
os

iti
on

s
(%

)

Figure 4: Percentage of silentness on the basis of the per-
centage of static positions in the code

analyze the dynamic impact. A static distribution repre-
sents silentness through stores’s positions in the code, i.e.,
store instructions in the assembly code file, while a dynamic
distribution represents silentness throughout all the store
instances occurring during the program execution.

Figure 4 represents the cumulative distribution of (static)
silent stores in each of our applications. The plots show,
for a given silentness (x-axis), what fraction of static stores
achieves this level of silentness. When x increases, we are
more selective on the degree of silentness, which is why all
curves are decreasing. For x=100 %, we select stores that
are always silent. This is extremely rare because, typically,
at least the first instance of a store initializes a piece of
data that is not already present. This explains why almost
all curves reach the value y=0 when x=100 %. Conversely,
when x=0, we select stores that are required to be silent
at least 0 % of the time, i.e., all stores: the curves start
from 100 % when x=0. The points in the curves identify the
silentness of the stores in each application. For example,
we observe that in the myocyte program, there are 53.8%,
51.6%, 47% and 0% of store instructions that are respec-
tively 17.9%, 56.3%, 99.9% and 100% silent (see labels 1, 2,
3 and 4 in Figure 4).

In Figure 5, we take into account the weight of each store
in an execution. Stores executed many times contribute
more than rarely executed ones. While the x-axis still de-
notes the same threshold filter for silentness, the y-axis now
represents the fraction of total executed stores that are silent
given this threshold. For the myocite program, we observe
that 58.8%, 56%, 48% and 0% of the silent instances are re-
spectively 17.9%, 56.3%, 99.9% and 100% silent (see labels
1, 2, 3 and 4 in Figure 5). Also observe the case of particle-
filter where the silentness of a number of store instructions
can be high, but with a very low impact.

After studying the distribution of silent stores in a pro-
gram, we can obtain an overview of the optimization ben-
efit. If the heaviness is not significant then the gain will
be marginal and even negative. In the next section, we de-
scribe how we formulate the gain based on the output of the
profiling of each application.

4.2 Impact of the silent-store elimination

kmeans
backprop

heartwall
X— particlefilter — ©

pathfinder
srad -B— myocyte A

b+treet
nw — v

bfs

70 1
x x— K

60

50

40

30
«

20

6810

© e0 0 20 40 60 80 100
silentness klllllll(%)

Pe
rc

en
ta

ge
 o

f
si

le
nt

 in
st

an
ce

s
(%

)

Figure 5: Percentage of silentness on the basis of the per-
centage of silent instances in the code

The impact of the silent-store elimination relies on differ-
ent factors. As explained in Section 4.1, the level of silent-
ness (high/low) and its heaviness are important. Moreover,
the relative cost of read/write operation (in Joules) is criti-
cal. The ratio between the cost of a read denoted as αR and
the cost of a write denoted as αW , can change the direction
of the results. Indeed, given a ratio, the optimization out-
puts may vary from very bad to very good. As mentioned
in Table 1, different ratios are presented in the literature.
Based on that, we did a study to analyze how the impact of
silent stores transformation depends drastically on the used
ratio. We assume that αW = 10 and we vary αR from 1 to
10 (as shown below in the formulas, only the ratio matters,
hence our choice of synthetic values).

In order to formulate the gain obtained in energy after
transformation, we define ∆ which is the difference between
the energetic cost before optimization and after optimiza-
tion, denoted respectively as costbase and costopt. In other
words, ∆ is the expected benefit from the transformation.
Since we replace a store with a read and maybe a store if
the store is not always silent, then: ∆i is defined as follows:

∆i = costbase − costopt = αW − (αR + αW × (1− Pi))
where Pi is the probability of silentness.
After transforming all the silent stores, then ∆ will be:

∆ =
∑

i∈{silent}
(αW − (αR + αW × (1− Pi)))

where Pi is the probability of silentness of different trans-
formed stores. In order to get the effective gain, ∆ is divided
by costbase which is the energetic cost of all read and write
operations before optimization:

Gain =

∑
i∈{silent}(αW − (αR + αW × (1− Pi)))

αR ×NR + αW ×NW

where NR and NW are respectively the number of load and
write operations, obtained from the profiling. Considering
r = αW

αR
, then we obtain:

(a) backprop

(b) bfs

(c) myocyte

(d) pathfinder

Figure 6: Energy gain according to the silentness threshold
of Rodinia applications, and their associated r = αW /αR
ratio: most sensitive applications.

Gain =

∑
i∈{silent}(Pi − 1/r)

NW /r +NR

In Figure 6 and 7, we plot this energy gain for each bench-
mark and for three values of the ratio r: 10, 5, and 1.For
each configuration, we plot the gain obtained when opti-
mizing silent-stores whose silentness is greater than a given
value (same x-axis as in previous figures).

First, we observe that, without exception, the higher is
the ratio, the higher is the gain. In other words, the more
asymmetric is the non volatile memory, the more the trans-
formation is beneficial. This is expected, and confirms the
validity of our approach.

Second, a ratio r = 1 means symmetric memory accesses.
For this technological node, our optimization cannot be ben-
eficial. This is confirmed graphically: the gain represented
by the blue curve is always negative, reaching 0 only when
all stores are 100 % silent.

Generally speaking, the maximum value indicates the best
threshold for the silent-store optimization. For a given non
volatile memory technology, characterized by the r value,
application developers and system designers can plot such
curves and identify the best threshold.

The four Rodinia applications reported in Figure 6 are
those which can benefit the most of silent store elimination
given their silentness thresholds and considered r ratios. The
remaining applications, displayed in Figure 7, only show a
marginal benefit. backprop and myocite can deliver large
energy gains up to 42 % when r = 10, while bfs can reach
16 %, and pathfinder 10 %.

In the intermediate case r = 2, the behavior basically de-
pends on applications. The bfs program shows a negative
gain with low silentness and positive gain with high silent-
ness (from 48 %). The srad program shows negative gain for
all silentness percentages, while the myocyte program shows
an interesting gain through all silentness percentages (see
Figure 6 and 7).

Depending on the silentness profile of the application, the
gain can be fairly flat, as in backprop, myocite or b+tree, or
vary significantly with the silentness threshold, as in pathfinder,
or heartwall. In the latter case, the energy consumption crit-
ically depends on the choice of the threshold.

Finally, curves typically show an ascending then descend-
ing phase. This derives from the following phenomenon.
Consider the value x = 1, i.e. the code is the original not
optimized (except for the extremely rare case where a store
is silent in exactly 100 % of the cases). When lowering x,
we increase the number of store instructions that are opti-
mized, and we increase the gain because we add highly silent
stores. But when x keeps decreasing, we start adding stores
that may not be silent enough and start causing degradation.

As a final note, remember that loads may be eliminated
by compiler optimization. This opportunity is not captured
by our above analytical model. It is hence pessimistic, and
actual results should be better than our findings.

5. CONCLUSION AND PERSPECTIVES
In this paper, we presented a rapid evaluation approach

for addressing the effective usage of STT-RAM emerging
non volatile memory technology in cache memory. We pro-
posed a software implementation of silent store elimination

(a) heartwall (b) kmeans (c) nw

(d) b+tree (e) srad (f) particlefilter

Figure 7: Energy gain according to the silentness threshold of Rodinia applications, and their associated r = αW /αR ratio:
marginally sensitive applications.

through LLVM compiler, in order to mitigate the costly
write operations on STT-RAM memory when executing pro-
grams. A store instruction is said to be silent if it writes
to memory location a value that is already present there.
An important property of our approach is its portability to
different processor architectures, contrarily to the previous
hardware-level approach. We conducted a comprehensive
evaluation of our proposal on the Rodinia benchmark. For
that, we applied an analytic evaluation of the tradeoff be-
tween the silentness threshold of stores in a given program
and the energy cost ratio of memory accesses. Depending
on the silentness of evaluated applications and typical ra-
tios, the gain in memory consumed by memory can reach up
to 42 %. While this paper mainly targeted the STT-RAM
technology (due to its maturity), the proposed silent store
elimination applies as well to other NVMs with asymmetric
access latencies.

This work will be extended by considering existing cycle-
accurate simulation tools, combined with power estimation
tools to evaluate more precisely the gain expected from mem-
ory configurations identified as the most energy-efficient with
the present analytic approach. A candidate framework is
MAGPIE [6], built on top of gem5 [3] and NVSim [7].

6. ACKNOWLEDGEMENTS
This work is funded by the French ANR agency under the

grant ANR-15-CE25-0007-01, CONTINUUM project.

7. REFERENCES
[1] Gordon B Bell, Kevin M Lepak, and Mikko H Lipasti.

Characterization of silent stores. In International
Conference on Parallel Architectures and Compilation
Techniques (PACT), 2000.

[2] Luca Benini and Giovanni de Micheli. System-level
power optimization: Techniques and tools. ACM
Trans. Des. Autom. Electron. Syst., 5(2), April 2000.

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A.
Wood. The gem5 simulator. SIGARCH Comput.
Archit. News, 39(2):1–7, August 2011.

[4] Shuai Che, Jeremy W. Sheaffer, Michael Boyer,
Lukasz G. Szafaryn, Liang Wang, and Kevin Skadron.
A characterization of the rodinia benchmark suite
with comparison to contemporary CMP workloads. In
International Symposium on Workload
Characterization (IISWC’10), 2010.

[5] Wei-Kai Cheng, Yen-Heng Ciou, and Po-Yuan Shen.
Architecture and data migration methodology for L1
cache design with hybrid SRAM and volatile
STT-RAM configuration. Microprocessors and
Microsystems, 42, 2016.

[6] Thibaud Delobelle, Pierre-Yves Peneau, Abdoulaye

Gamatie, Florent Bruguier, Gilles Sassatelli
Sophiane Senni, and Lionel Torres. Magpie:
System-level evaluation of manycore systems with
emerging memory technologies. In Workshop on
Emerging Memory Solutions - Technology,
Manufacturing, Architectures, Design and Test at
Design Automation and Test in Europe - DATE’2017,
Lausanne, Switzerland, 2017.

[7] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P.
Jouppi. Nvsim: A circuit-level performance, energy,
and area model for emerging nonvolatile memory.
IEEE Trans. on CAD of Integrated Circuits and
Systems, 31(7):994–1007, 2012.

[8] Ricardo Gonzalez and Mark Horowitz. Energy
dissipation in general purpose microprocessors. IEEE
Journal of solid-state circuits, 31(9):1277–1284, 1996.

[9] Jingtong Hu, Chun Jason Xue, Wei-Che Tseng, Yi He,
Meikang Qiu, and Edwin H.-M. Sha. Reducing write
activities on non-volatile memories in embedded
CMPs via data migration and recomputation. In
Design Automation Conference (DAC’10), 2010.

[10] K Ikegami, H Noguchi, C Kamata, M Amano, K Abe,
K Kushida, E Kitagawa, T Ochiai, N Shimomura,
A Kawasumi, H Hara, J Ito, and S Fujita. A 4ns, 0.9v
write voltage embedded perpendicular stt-mram
fabricated by mtj-last process, 04 2014.

[11] Adwait Jog, Asit K. Mishra, Cong Xu, Yuan Xie,
Vijaykrishnan Narayanan, Ravishankar Iyer, and
Chita R. Das. Cache revive: architecting volatile
STT-RAM caches for enhanced performance in CMPs.
In Annual Design Automation Conference DAC, 2012.

[12] Chris Lattner and Vikram Adve. LLVM: A
compilation framework for lifelong program analysis &
transformation. In International Symposium on Code
Generation and Optimization: Feedback-directed and
Runtime Optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

[13] Kevin M Lepak, Gordon B Bell, and Mikko H Lipasti.
Silent stores and store value locality. Transactions on
Computers, 50(11), 2001.

[14] Kevin M. Lepak and Mikko H. Lipasti. On the value
locality of store instructions. In International
Symposium on Computer Architecture (ISCA), 2000.

[15] Jianhua Li, Chun Jason Xue, and Yinlong Xu.
STT-RAM based energy-efficiency hybrid cache for
CMPs. In International Conference on VLSI and
System-on-Chip (VLSI-SoC’11), 2011.

[16] Qingan Li, Jianhua Li, Liang Shi, Chun Jason Xue,
and Yanxiang He. MAC: Migration-aware compilation
for STT-RAM based hybrid cache in embedded
systems. In International Symposium on Low Power
Electronics and Design (ISLPED), 2012.

[17] Qingan Li, Jianhua Li, Liang Shi, Mengying Zhao,
Chun Jason Xue, and Yanxiang He. Compiler-assisted
STT-RAM-based hybrid cache for energy efficient
embedded systems. Transactions on Very Large Scale
Integration (VLSI) Systems, 22(8), 2014.

[18] Qingan Li, Liang Shi, Jianhua Li, Chun Jason Xue,
and Yanxiang He. Code motion for migration
minimization in STT-RAM based hybrid cache. In
Computer Society Annual Symposium on VLSI, 2012.

[19] Qingan Li, Yingchao Zhao, Jingtong Hu, Chun Jason

Xue, Edwin Sha, and Yanxiang He. MGC: Multiple
graph-coloring for non-volatile memory based hybrid
scratchpad memory. Workshop on Interaction between
Compilers and Computer Architectures, 2012.

[20] Sparsh Mittal and Jeffrey S. Vetter. A survey of
software techniques for using non-volatile memories
for storage and main memory systems. Trans. Parallel
Distrib. Syst., 27(5), 2016.

[21] Hiroki Noguchi, Kazutaka Ikegami, Keiichi Kushida,
Keiko Abe, Shogo Itai, Satoshi Takaya, Naoharu
Shimomura, Junichi Ito, Atsushi Kawasumi, Hiroyuki
Hara, and Shigeji Fujita. 7.5 a 3.3ns-access-time
71.2w/mhz 1mb embedded stt-mram using physically
eliminated read-disturb scheme and normally-off
memory architecture, 02 2015.

[22] Xiang Pan and Radu Teodorescu. Nvsleep: Using
non-volatile memory to enable fast sleep/wakeup of
idle cores. In International Conference on Computer
Design, ICCD, 2014.

[23] Preeti Ranjan Panda, Nikil D. Dutt, Alexandru
Nicolau, Francky Catthoor, Arnout Vandecappelle,
Erik Brockmeyer, Chidamber Kulkarni, and Eddy
de Greef. Data memory organization and
optimizations in application-specific systems. Design
& Test of Computers, 18(3), 2001.

[24] Clinton W. Smullen, Vidyabhushan Mohan, Anurag
Nigam, Sudhanva Gurumurthi, and Mircea R. Stan.
Relaxing non-volatility for fast and energy-efficient
STT-RAM caches. In International Symposium on
High Performance Computer Architecture, 2011.

[25] Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and
Yiran Chen. A novel architecture of the 3D stacked
MRAM L2 cache for CMPs. In International
Conference on High-Performance Computer
Architecture (HPCA), 2009.

[26] Hung-Wei Tseng and Dean M. Tullsen. Data-triggered
threads: Eliminating redundant computation. In
International Conference on High-Performance
Computer Architecture (HPCA), 2011.

[27] Hung-Wei Tseng and Dean M. Tullsen. Software
data-triggered threads. In Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA, 2012.

[28] Hung-Wei Tseng and Dean M. Tullsen. CDTT:
compiler-generated data-triggered threads. In
International Symposium on High Performance
Computer Architecture HPCA, 2014.

[29] Shasha Wen, Milind Chabbi, and Xu Liu. REDSPY:
exploring value locality in software. In International
Conference on Architectural Support for Programming
Languages and Operating Systems ASPLOS, 2017.

[30] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, and
Yuan Xie. Power and performance of read-write aware
hybrid caches with non-volatile memories. In Design,
Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2009.

[31] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang.
Energy reduction for STT-RAM using early write
termination. In International Conference on

Computer-Aided Design, ICCAD, 2009.

L

HEPSYCODE-RT : a Real-Time
Extension for an ESL HW/SW
Co-Design Methodology

LI

HEPSYCODE-RT: a Real-Time Extension for an

ESL HW/SW Co-Design Methodology

Vittoriano Muttillo
Center of Excellence DEWS

Via Vetoio, 1
L’Aquila, Italy

vittoriano.muttillo@graduate.univaq.it

Giacomo Valente
Center of Excellence DEWS

Via Vetoio, 1
L’Aquila, Italy

giacomo.valente@graduate.univaq.it

Daniele Ciambrone
Center of Excellence DEWS

Via Vetoio, 1
L’Aquila, Italy

daniele.ciambrone@student.univaq.it

Vincenzo Stoico
Center of Excellence DEWS

Via Vetoio, 1
L’Aquila, Italy

vincenzo.stoico@student.univaq.it

Luigi Pomante
Center of Excellence DEWS

Via Vetoio, 1
L’Aquila, Italy

luigi.pomante@univaq.it

ABSTRACT

This work 1 focuses on the definition of a methodology for

handling embedded real-time applications, starting from an

existing HW/SW co-design methodology able to support the

design of dedicated heterogeneous parallel systems. The state-of-

the-art related to similar tools and methodologies is presented and

the reference framework with the proposed extension to the real-

time world is introduced. A case study is then described to show a

design space exploration able to consider such an extension.

CCS CONCEPTS

• Hardware → Software tools for EDA; • Hardware →

Modeling and parameter extraction; Timing Simulation; DSE;

KEYWORDS

HW/SW Co-Design, Heterogeneous Parallel Systems, DSE, real-

time systems

1 INTRODUCTION

During the last years, the spread and importance of embedded

systems are increasing but it is still not yet possible to completely

engineer their system-level design flow. Designers commonly

adopt one or more system-level models (e.g. block diagrams,

UML, SystemC, etc.) to have a complete problem view, to

perform a check on HW/SW resources allocation and to validate

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

RAPIDO, January 22-24, 2018, Manchester, United Kingdom

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6417-1/18/01…$15.00

https://doi.org/10.1145/3180665.3180670

the design by simulating the system behavior. In this scenario, SW

tools to support designers to reduce costs and overall complexity

of systems development are even more of fundamental

importance. Unfortunately, there are no fully engineered general

methodologies defined for this purpose and often the best option

is still to refer to experienced designer indications to take

advantage of empirical criteria and qualitative assessments. For

example, systems based on heterogeneous multi-processor

architectures (Heterogeneous Multi-Processor Systems, HMPS)

have been recently exploited for a wide range of application

domains, especially in the System-on-Chip (SoC) form factor (e.g.

[2]). In particular, such architectures are often used to implement

Dedicated Systems (DS), i.e. digital electronic systems with an

application-specific HW/SW architecture designed to satisfy a

priori known application with F/NF requirements. In such a case,

they are called Dedicated Heterogeneous Multi-Processor

Systems (D-HMPS). D-HMPS are so complex that the adopted

HW/SW Co-Design Methodology plays a major role in

determining the success of a product. The situation is even worse

if the considered system is a hard/soft real-time one. In such a

case, time constraints are normally defined considering the worst

possible case (hard) or an average situation (soft).

In such a context, this work focuses on the definition of a

HW/SW co-design methodology and the development of a related

prototypal tool to improve the design time of embedded real-time

applications. Specifically, the whole framework drives the

designer from an Electronic System-Level (ESL) behavioral

model, with related NF requirements, including real-time ones, to

the final HW/SW implementation, considering specific HW

technologies, scheduling policies and Inter-Process

Communication (IPC) mechanisms. The remainder of the paper is

organized as follows: Section II provides an overview of HW/SW

co-design tools related to embedded real-time computing systems.

Section III describes the reference HW/SW Co-Design

methodology, whereas Section IV discusses the extension to adapt

it to the real-time world. Section V presents a case study that

shows a design space exploration able to consider such an

2

extension. Finally, Section VI reports some conclusive

considerations and presents future works.

2 HW/SW CO-DESIGN OF REAL-TIME

EMBEDDED SYSTEMS

A remarkable number of research works have focused on the

system-level HW/SW co-design of D-HMPS [3]. In such a

context, the most critical steps are always related to the System

Specification and the Design Space Exploration (DSE) activities

[4]. The main differences between the approaches are related to

the amount of information and actions explicitly requested to the

designer and influenced by his experience. In particular, many

approaches (especially those based on the Y-Chart principle [5])

explicitly require as an input the HW architecture to be considered

for mapping purposes. Other works [6] aims to the problem of

designing embedded real-time systems starting from the

input/output constraints on the final implementation. Offline

schedulability and feasibility analysis involve different research

works [7][8], with respect to the correct algorithms that can

guarantee optimality depending on the load parameters. To

analyze the behavior of a system, many tools have been developed

to evaluate/estimate timing parameters, to validate scheduling and

to perform simulations. In such a domain, the work presented in

[9] starts from three sub-models, considering a model for SW

application (Platform Independent Model) on one side and a

platform (Platform Description Model) on the other side, and both

models are connected by a Platform Specific Model that defines

the mapping of SW into HW. By exploiting a specific extension

for DSE and performance evaluation [10], in order to consider

non-functional properties such as real-time, power, temperature,

reliability constraints and so on, the tool offers different

simulation and estimation outputs that drive the designer from the

system-level model to the final implementation.

With respect to works that heavily relies on Model of

Computations (MoC) theory, ForSyDe (Formal System Design)

[11] is a methodology for modeling and design heterogeneous

embedded and cyber-physical systems. The starting application is

modeled by a network of processes interconnected by signals.

Then, the model is refined by different design transformations into

a target implementation language.

An interesting academic tool is SynDEx [12], a system level

EDA tool based on the Algorithm-Architecture Adequation (AAA)

methodology intended to find implementation solution, under

real-time constraints, for embedded applications onto multi-

component HW/SW architectures.

Finally, to have a look also to a SystemC-based commercial

product, it is worth noting to cite Intel CoFluent [13] as a

promising system-level modeling and simulation environment.

Other than the model of the system behavior, it explicitly requires

a manual modeling of both the hardware architecture and the

mapping.

So, at the best of our knowledge, there are very few system-

level HW/SW co-design methodologies that try to fully address

the problem of both “automatically suggest an HW/SW

partitioning of the system specification” and “map the partitioned

entities onto an automatically defined heterogeneous multi-

processor architecture” while considering also real-time

constraints.

Figure 1: Reference HW/SW Co-Design Flow.

3 HW/SW CO-DESIGN FRAMEWORK

In the context of embedded real-time systems design, this work

starts from a specific framework (called HEPSYCODE: HW/SW

Co-Design of Heterogeneous Parallel Dedicated Systems) [14],

based on an existing System-Level HW/SW Co-Design

Methodology [15][19][21], and introduces the possibility to

specify real-time requirements in the set of non-functional ones

(the new framework is so called HEPSYCODE-RT). The main

items composing such a methodology and its extension are

discussed in the next paragraphs, while the reference ESL

HW/SW Co-Design Flow is shown in Fig. 1.

3.1 Modeling Language

The system behavior modeling language introduced in

HEPSYCODE-RT, named HML (HEPSY Modeling Language)

[17], is based on the Communicating Sequential Processes (CSP)

MoC [16]. It allows modeling the behavior of the system as a

network of processes communicating through unidirectional

synchronous channels. By means of HML it is possible to specify

the System Behavior Model (SBM), an executable model of the

system behavior, a set of Non–Functional constraints (NFC) and a

set of Reference Inputs (RI) to be used for simulation-based

activities. It is worth noting that another HEPSYCODE extension

able to exploit more formal approaches is currently under

development [17].

In particular SBM = {PS, CH} is a CSP-based executable

model of the system behavior that explicitly defines

communication among processes (PS) using unidirectional point-

to-point blocking channels (CH) for data exchange. PS = {ps1,

ps2, .. , psn} is a set of concurrent processes that communicate

 3

with each others exclusively by means of channels and use only

local variables. Each process is described by means of a sequence

of statements by using a suitable modeling language. Each process

can have a priority p: 1 (lower) to 100 (higher) imposed by the

designer. The concept of statement has to be fixed once selected a

proper specification/modeling language. Languages suitable to

describe CSP are SystemC (chosen for this work), OCCAM,

Handel-C, ADA and so on. More abstract languages are UML,

SysML, Simulink and so on. CH = {ch1, ch2, .. , chn} is a set of

channels where each channel is characterized by source and

destination processes, and some details (i.e. size, type) about

transferred data. Each channel can have also a priority p: 1 (lower)

to 100 (higher) imposed by the designer.

RI: {(i1 ,o1), …, (in ,on)} is a set of inputs (possibly timed),

representative as much as possible of typical operating conditions

of the system, and related expected outputs to be used for analysis

and simulation-based validation.

The Non–Functional Constraints (NFC) are composed of

Timing Constraints (TC), Architectural Constraints (AC) and

Scheduling Directives. Two different TC can be considered by the

designer: Time-to-Completion (TTC), unique and related to the

whole SBM, is the time available to complete the SBM execution

from the first input trigger to the complete output generation;

Time-to-Reaction (TTR) is a set of real-time constraints related to

the time available for the execution of leaf CSP processes (i.e. the

time available to execute the statements inside an input/output

pair that delimits the CPS process main body, see Fig. 2).

Different leaf processes can have different associated TTR. This

real-time constraints are not strictly related to classical RT

requirements, but impose a timing bound to the execution of some

specific processes. Both TTC and TTR constraints shall be

satisfied by each element of RI.

Figure 2: Time-To-Reaction Constrain.

The Architectural Constraints (AC) are related to the Target

Form Factor (TFF) as On-chip (ASIC, FPGA) or On-Board

(PCB) and to the Target Template Architecture (TTA) as type of

available Basic Blocks (BB), min/max number of possible BB

instances, min/max number of available Interconnections

instances and/or total available area (or an equivalent metric).

Finally, the Scheduling Directives (SD) specify the available

scheduling policies. At the moment they are First-Come First-

Served (FCFS) and Fixed Priority (FP) preemptive scheduling.

3.2 Technologies Library and Basic Blocks

The target HW architectures is composed of different basic HW

components. These components are collected into a Technologies

Library (TL). TL can be considered as a generic “database” that

provides the characterization of the available technologies. In

particular TL = {PU, MU, EIL}, where PU = {pu1, pu2, .. , pup} is

a set of Processing Units, MU = {mu1, mu2, .. , mum} is a set of

Memory Units and EIL = {il1, il2, .. , ilc} is a set of External

Interconnection Links. However, the detailed characterizations are

dependent on TFF. The main differences are related to the

different attributes (or different meaning of the same attribute)

needed to characterize processing units, local memories, and

interconnections. This work considers only TL for PCB where

each PU that executes SW shall be a separate discrete Commercial

Off-The-Shelf (COTS) Integrated Circuit (IC) mounted on a

board.

PU elements are divided into two main groups: the ones that

perform processing by means of the execution of some Instruction

Set Architecture (ISA), called SW-PU, and the ones that perform

processing without relying on an ISA, called HW-PU. Each pui in

PU for PCB is characterized by a Name, a Processor Type,

Capacity (SW-PU: max allowed load; HW-PU: available

resources as number of equivalent-gates, LUT, Cell, etc.), ISA

(only for SW-PU), Frequency, Context Switch Overhead (only for

SW-PU), a statement-level performance metric (like CC4CS [18]

or equivalent ones), and a unit cost (€). With respect to Processor

Type, PU elements are further classified in three classes [1]:

General-Purpose Processors (SW-PU: GPP); Application-

Specific Processors (SW-PU: ASP) targeted to particular

application domains (e.g. Digital Signal Processors, DSP);

Single-Purpose Processor (HW-PU: SPP; realized by means of

ASIC/FPGA.

MU elements are divided in two main classes: Volatile

Memory Units (VLMU) and Non-Volatile Memory Units

(NVLMU), with a main parameter related to capacity (i.e. bytes).

EIL elements are characterized by some parameters related to

bandwidth, number of connectable items and concurrency

properties.

The designer will use such components to build a set of Basic

Blocks (BB). So, BB = {bb1, bb2, .. , bbb} is the set of BB

available during DSE step to automatically define the HW

architecture. A generic BB is composed of a set of PU, a set of

MU and a Communication Unit (CU). CU represents the set of

EIL that can be managed by a BB. BB internal architecture is

dependent on TFF and TTA. In particular, each BB element can be

generally composed of 1 or more PU elements, some MU

elements and 1 CU element. BB elements are the ones effectively

taken as input by the system-level flow for analysis, estimations

and DSE steps. So, the target HW architecture can be seen as a set

of BB elements interconnected by means of one or more EIL

elements. The type of available BB are automatically defined by

the selected TTA.

This work currently focuses only on: Homogeneous Multi-

Processor System with Distributed Memory where each BB

element is composed of only 1 PU element (homogenous among

4

BB elements), some local MU elements and 1 CU element;

Heterogeneous Multi-Processor System with Distributed Memory

where each BB element is composed of only 1 PU element

(heterogeneous among BB elements), some local MU elements

and 1 CU element.

3.3 ESL HW/SW Co-Design Flow

The first step of the adopted co-design flow is the Functional

Simulation where SBM is simulated to check its correctness with

respect to RI. Then, the next step aims at extracting as much as

possible information about the system by analyzing the SBM

while considering the available BB. This step is supported by Co-

Analysis and Co-Estimation activities to evaluate/estimate several

metrics related to the BB involved in the design flow.

Co-Analysis performs evaluation of two metrics. The first one

is called Affinity [19]. The Affinity A = {[a1, a2, .. an] | ai =

[A(GPPi), A(DSPi), A(SPPi)]} of a process psi is a triplet of values

in the interval [0,1] that provides a quantification of the matching

between the structural and functional features of the functionality

implemented by a process and the architectural features of each of

GPP, DSP, and SPP. The second metric evaluated during Co-

analysis is related to Concurrency. The concurrency CN(PS, CH)

= [CNPS, CNCH] is expressed by the set of processes PS and

channels CH pairs that could be potentially concurrently

“working”, where CNPS = { [psi, psj] : psi ˄ psj could be

potentially executed concurrently} and CNCH = { [chi, chj] : chi ˄

chj could potentially transfer data concurrently}. CN is evaluated

by means of a functional simulation with respect to RI.

Co-estimation performs two kinds of estimations: Static

Estimations of Timing and Size, and Dynamic Estimations of Load

and Bandwidth. The Timing metric is the number of clock cycles

needed to execute each statement j of each process psi by means

of each processor k in the available BB, with k=1..n. The goal is

to estimate how many clock cycles are needed by a specific BB to

execute the implementation of a specific statement (e.g. [18] and

[20] presents two possible approaches).

Size is a set of estimations for each statement of each process

with respect to each available processor. It is related to bytes or

area/resources metrics depending on SW or HW implementations.

L is the Load (i.e. the processor utilization percentage) that each

process would impose to each not-SPP processor to satisfy

imposed TTC/TTR timing constraints (see Section IV). Finally the

Bandwidth (B) is the number of bits sent/received over each

channel (i.e. bits exchanged by communicating processes pairs in

PS) during an interval of time equal to TTC.

After this steps, the reference co-design flow reaches the DSE

step (as shown in Figure 3). It includes two iterative activities:

“HW/SW Partitioning, Mapping and Architecture Definition”,

based on a genetic algorithm that allows to explore the design

space looking for feasible mapping/architecture items suitable to

satisfy imposed constraints; “Timing Co-Simulation”, that

considers suggested mapping/architecture items to actually check

for timing constraints satisfaction. When the mapping/architecture

item proposed by the DSE step is acceptable, it is possible to

proceed with system implementation (i.e. Algorithm-Level Flow).

Figure 3: Design Space Exploration Framework.

4 HEPSYCODE-RT: PROPOSED EXTENSION

With respect to NF requirements, this work provides an extension

that allow the methodology to better consider architectural and

timing constraints. Related to the SBM model, it is now possible

to identify two classes of CSP processes: classical CSP process

and real-time CSP processes. In the current version, the last ones

shall be leaf processes and their body (i.e. a never-ending loop)

shall start with a channel read and end with a channel write

towards the same process. To such input/output pair will be

referred the TTR constraint. Moreover, in such a context, a CSP to

Task Model transformation has been defined to allow considering

classical real-time world notations. Such a transformation

involves concepts related to both processes and channels.

Figure 4: Time-To-Reaction Constrain.

The general transformation is shown in Figure 4. In this

example the CSP SBM model is first expanded in a Process

Interaction Model (PIM), where the processes A and B are split

into different pieces of code, delimited by channel calls. The final

transformation starts from the PIM model and associates the

single pieces of code to specific tasks in the classical task

representation models (i.e. Process-Task Model, PTM). At this

time, the designer should write a SBM avoiding cycles to match

the classical real-time DAG representation of tasks.

 5

Figure 5: Time-To-Reaction Constrain.

With respect to the real-time CSP processes, the actual

transformation is the one shown in Figure 5. With this specific

kind of representation it is possible to consider concurrently

timing constraints related to the whole SBM (TTC) and real-time

constraints related to the reaction of specific processes (TTR)

while considering periodic leaf processes as periodic ones.

With this assumption, it is possible to adapt the Load

Estimation step to consider such real-time constraints. In

particular, the load can be defined in two different ways.

The Load Li that each non real-time process psi would impose

to each non-SPP processor s to satisfy TTC. Li is estimated by

allocating all the n processes to a single-instance of each software

processor s (puj ⊆ {[pu1, .. , pus]} with s ≤ Total Number of puj)

and performing some simulations. Three parameters have to be

computed: FRTj (Free Running Time), i.e. the total application

simulation time on processor puj; ti, the simulated time for each

process psi in a loop on processor puj; N, the number of simulation

loops. Starting from this estimated parameters, the Free Running

Load FRLi is calculated by the equation:

𝐹𝑅𝐿𝑖 =
(𝑡𝑖 ∗ 𝑁)

𝐹𝑅𝑇𝑗
 (1)

where 𝐹𝑅𝑇𝑗 𝑁⁄ is the average period of each processes on

processor puj. By imposing that the execution time shall be equal

to TTC, it is possible to evaluate the Load Li that processes psi

would impose to the SW processor to satisfy TTC itself. In fact,

setting FRTj equal to TTC, for each process/processor pair, such

as:

TTC = 𝑥𝑗 ∗ 𝐹𝑅𝑇𝑗 𝑤𝑖𝑡ℎ 0 ≤ 𝑥𝑗 ≤ 1 (2)

The value of estimated Load Li that the system imposes to

processor puj to satisfy TTC is:

L 𝑖 =
(𝑡𝑖 ∗ 𝑁)

𝑇𝑇𝐶
=

(𝑡𝑖 ∗ 𝑁)

𝐹𝑅𝑇𝑗
∗

𝐹𝑅𝑇𝑗

𝑇𝑇𝐶
=

𝐹𝑅𝐿𝑗

𝑥𝑗
 (3)

The Load Li that each real-time process psi would impose to

each s software processor to satisfy input real-time constrain TTRi

is directly set equal to:

𝐿𝑖 =
𝑡𝑖

𝑇𝑇𝑅𝑖
 (4)

TTRi is the real-time constraint related to the process psi. In

this way it is possible to consider two different situations: Hard

real-time process, if ti < TTRi, the constraints are fulfilled and it is

possible to consider the value Li as an input to the DSE step; Soft

real-time process, if ti < (TTRi + δ(t)), then constraints could be

considered as soft real-time ones.

Then, thanks to all the estimated TTC/TTR loads, it is possible

to perform DSE step in order to fulfill also RT constraints.

Moreover, an additional architectural constraint deriving from

TTR is that non-SPP processors executing real-time processes

have to adopt a scheduling policy suitable for real-time scheduling

(e.g. fixed-priority preemptive scheduling). Finally, the effect of

such scheduling policy shall be considered during the timing co-

simulations performed to validate the proposed solutions.

5 CASE STUDY

This section presents a simple case study used to show the effects

of the proposed real-time extension to HEPSYCODE.

Figure 6: CSP MoC Example

The reference SBM is shown in Figure 6, where the processes

PS = {ps1, .. , ps4}, with priority of {ps1, ps2, ps4} equal to each

other and priority of ps3 higher than the others, exchange data

using the channels CH = {ch1, .. , ch7}. In this scenario there are

three non real-time processes {ps1, ps2, ps4} and one process {ps3}

with real-time constraint equal to TTR3. The whole SBM is also

subject to a TTC. So, for a given processor puj, the load

parameters for the four processes are: L1,j=t1,j/([xj*FTRj]/N),

L2,j=t2,j/([xj*FTRj]/N), L4,j= t4,j/([xj*FTRj] /N), L3,j = t3,j/TTR3.

After the Co-analysis and Co-estimation steps, by considering

such loads, the DSE step should be able to suggest a

partition/mapping item able to fulfill both TTC and TTR3

constraints. Several DSE have been performed considering

different TTC/TTR pairs. In the considered use case the available

BBs are: bb1 (SW-PU): 20 MHz 8-bit 8051 CISC core with 128

byte of Internal RAM, 64K of internal ROM, without cache and

external memory (cost 10); bb2 (SW-PU): 150 MHz 32-bit

LEON3 soft-processor with 2*4 KiB L1 caches, RAM size of

4096 KiB and a ROM of 2048 KiB (cost 50); bb3 (HW-PU): 300

MHz Altera Stratix V (cost 300).

For each BB is allowed maximum 1 instance and they are

supposed to communicate by means of a shared bus. Moreover,

each SW-PU uses a Fixed Priority preemptive scheduling

algorithm. Results shown in Table 1 figure out as the DSE step

with real-time extension is able to satisfy TTC/TTR constraints, at

6

least with respect to timing simulations. In particular, by setting

TTR and decreasing TTC, DSE suggests solutions that fulfil the

timing requirements most of the time (two not satisfactory

suggestions are underlined in Table 1). Decreasing the TTR, the

DSE suggests to allocate the real-time process on puj that fulfil the

constraints. It is worth noting that, if the TTR is very strict, the

only valid mapping involve the use of a more expensive FPGA.

Table 1: Results from the DSE on the Use Case Example

Allocation
Simulated

Time (ms)
ps3 (ms)

TTC

(ms)

TTR

(ms)

All on bb1
 794,88 8,10 600 10

All on bb2
 650,66 5,54 600 10

ps1, ps2, ps3 on bb1

ps4 on bb2, 590,80 8,10 600 10

ps3 on bb1

ps1, ps4 on bb2

ps2 on bb3
264,89 8,10 400 10

ps1, ps3 on bb1

ps4 on bb2

ps2 on bb3
298,88 8,10 300 10

ps4 on bb1

ps1, ps2, ps3 on bb3 201,48 0,009 200 10

ps3 on bb1

ps4 on bb2

ps1, ps2 on bb3
145,67 8,10 200 10

ps3 on bb1

ps1, ps2, ps4 on bb3
81,04 8,10 100 10

ps1, ps2 on bb1

ps3, ps4 on bb2, 562,85 5,54 600 7

ps1, pu4 on bb1

ps2, ps3 on bb2 462,58 5,54 400 7

ps1 on bb1

ps3, ps4 on bb2

ps2 on bb3
220,80 5,54 400 7

ps1, on bb1

ps3 on bb2

ps2, ps4 on bb3

206,99 5,54 300 7

ps3 on bb2

ps1, ps2, ps4 on bb3
55,55 5,55 200 7

ps1, ps4 on bb1

ps2 on bb2

ps3 on bb3

428,87 0,009 600 4

ps4 on bb1

ps1, ps2 on bb2

ps3 on bb3
337,56 0,009 400 4

ps4 on bb1

ps1 on bb2

ps2, ps3 on bb3
214,80 0,009 300 4

ps4 on bb2

ps1, ps2, ps3 on bb3 137,62 0,009 200 4

All on bb3 0,22 0,009 100 4

4 CONCLUSIONS

This work has proposed an extended Electronic Design

Automation (EDA) methodology (and related tools) in the ESL

domain supporting the development of Real-time Embedded

Systems. The final result is a methodology able to support real-

time systems developments by suggesting both the platform and

mapping solutions for the specific application. Future works will

involve the introduction of other parameters associated to PU such

as Power (peak power [W] or other metrics) and Energy. Others

analysis, use cases and tests will be done in future, but starting

from this preliminary results it is easy to note that the DSE step

with load estimation and real-time extension seem to be quite

effective with respect to execution times estimated by simulation.

Validation on the final HW/SW implementation must be done in

future to reduce errors at design time.

ACKNOWLEDGMENTS

This work has been partially supported by the ECSEL RIA 2016

MegaM@Rt2 and AQUAS projects.

REFERENCES
[1] Vahid, F. and Givargis, T. Embedded System Design: A Unified

Hardware/Software Introduction. John Wiley & Sons, NY, USA, 2001.

[2] Xilinx Zynq7000, http://www.xilinx.com.

[3] Jia, Z. J., Bautista, T., Núñez, A. Pimentel, A. D. and Thompson, M. A system-

level infrastructure for multidimensional MP-SoC design space co-exploration.

In ACM Trans. Embedd. Comput. Syst. 13, 1s, Article 27 (December 2013), 26

pages, 2013.

[4] Teich, J. Hardware/Software Codesign: The Past, the Present, and Predicting

the Future. Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp.

1411-1430, 2012.

[5] Keutzer, K., Malik, S., Newton, A., Rabaey, J., and Sangiovanni-Vincentelli,

A. System level design: Orthogonalization of concerns and platform-based

design. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. 19, 12, 1523–1543,

2000.

[6] Lee, E. A. and Seshia, S. A. Introduction to Embedded Systems, a Cyber-

Physical Systems approach. In MIT Press, Second Edition, 2015.

[7] Real, J. and Crespo, A. Mode Change Protocols for Real-Time Systems: A

Survey and a New Proposal. In Journal Real-Time Systems, 26, 2, 161-19,

2004.

[8] Buttazzo, G. Hard Real-Time Computing Systems - Predictable Scheduling

Algorithms and Applications. In Springer, 3rd edition, 2011.

[9] Posadas, H., Penil, P., Nicolas, A. and Villar., E. Automatic synthesis of

communication and concurrency for exploring component-based system

implementations considering uml channel semantics. In Journal of Systems

Architecture, 61, 8, 341-360, 2015.

[10] Contrex - Design of embedded mixed-criticality CONTRol systems under

consideration of EXtra-functional properties. https://contrex.offis.de.

[11] Rosvall, K. and Sander. I. A constraint-based design space exploration

framework for real-time applications on MPSoCs. In Design, Automation and

Test in Europe, Dresden, Germany. 2014.

[12] Yu, H., Ma, Y., Gautier, T., Besnard, L., Talpin, J.P., Le Guernic, P. and Sorel.,

Y. Exploring system architectures in aadl via polychrony and syndex. In

Frontiers of Computer Science Journal, 7, 5, 627-649, 2013.

[13] Intel cofluent. http://www.intel.com.

[14] Hepsycode: A System-Level Methodology for HW/SW Co-Design of

Heterogeneous Parallel Dedicated Systems, www.hepsycode.com.

[15] Pomante, L. System-level design space exploration for dedicated heterogeneous

multi-processor systems. In Conf. on Appl. Syst., 79-86, 2011.

[16] Hoare, C. A. R. Communicating sequential processes. In Springer, New York,

NY, 413-443, 1978.

[17] Di Pompeo, D., Incerto, E., Muttillo, V., Pomante, L. and Valente, G. An

Efficient Performance-Driven Approach for HW/SW Co-Design. In

Proceedings of the 8th ACM/SPEC on International Conference on

Performance Engineering (ICPE '17), ACM, New York, NY, USA, 323-326,

2017.

[18] Stoico, V., Muttillo, V., Valente, G., Pomante, L. and D'Antonio, F. CC4CS: A

Unifying Statement-Level Performance Metric for HW/SW Technologies, In

Eur. Conf. on Digit. Syst. (DSD), 2017.

[19] Pomante, L., Sciuto, D., Salice, F., Fornaciari, W. and Brandolese, C. Affinity-

Driven System Design Exploration for Heterogeneous Multiprocessor SoC, In

IEEE Trans. on Comp., 55, 5, 2006.

[20] Allara, A., Brandolese, C., Fornaciari, W., Salice, F. and Sciuto, D. System-

level performance estimation strategy for sw and hw, In Proc. Int. Conf. on

Comp., Austin, TX, 48-53, 1998.

[21] Pomante, L. HW/SW Co-Design of Dedicated Heterogeneous Parallel Systems:

an Extended Design Space Exploration Approach. In IET Computers & Digital

Technique, 2013.

LVIII

NVMain Extension for Multi-Level
Cache Systems

LIX

NVMain Extension for Multi-Level Cache Systems

Asif Ali Khan, Fazal Hameed and Jeronimo Castrillon
Chair For Compiler Construction

Technische Universität Dresden, Germany
{ asif_ali.khan, fazal.hameed, jeronimo.castrillon }@tu-dresden.de

ABSTRACT
In this paper, we present an extension of the NVMain mem-
ory simulator. The objective is to facilitate computer ar-
chitects to model complex memory designs for future com-
puting systems in an accurate simulation framework. The
simulator supports commodity memory models for DRAM
as well as emerging non-volatile memories technologies such
STT-RAM, ReRAM, PCRAM and hybrid models. The cur-
rent publicly available version of NVMain, NVMain 2.0,
offers support for main memory (using DRAM and NVM
technologies) and a die-stacked DRAM cache. We extend
the cache model of the simulator by introducing an SRAM
cache model and its supporting modules. With this addition,
designers can model hybrid multi-level cache hierarchies by
using the die-stacked DRAM cache and SRAM caches. We
provide a reference implementation of an optimized cache or-
ganization scheme for die-stacked DRAM cache along with
a tag-cache unit that, together, reduces cache miss latency.
To enable integration of the new features in the existing
memory hierarchy, we make necessary changes to the mem-
ory controller. We provide functional verification of the new
modules and put forward our approach for timing and power
verification. We run random mixes of the SPEC2006 bench-
marks and observe±10% difference in simulation results.

CCS Concepts
•Memory System Design → Memory System Hirarichy;
Memory Technologies; •Memory Simulators→ Simulator
Accuracy; Design options; Simulator Speed; Extendibility;
Resilience;

Keywords
Memory Simulator; SRAM Cache; Cache Organization; Row
Buffer; Tag-cache

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

RAPIDO, January 22–24, 2018, Manchester, United Kingdom
c© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-6417-1/18/01. . . $15.00

DOI: https://doi.org/10.1145/3180665.3180672

1. INTRODUCTION
CPU and memory system are the two most important

components in any computing system. From the perfor-
mance perspective, both components are strictly interlinked.
CPU frequency has rapidly increased in the past decade
while frequency of the memory system has not scaled up
at the same pace. The memory system has always been on
the down side due its high access time and relatively low
operating frequency, becoming a major bottleneck in mod-
ern days computing systems. The rise of multi-core sys-
tems has further worsened this problem and the available
per core capacity and per core bandwidth has diminished
further. Commodity memory technologies such as DRAM
are unable to fill this ever-increasing processor memory gap.

DRAM is highly criticized for being expensive in terms
of power as well. The major factor that dominates DRAM
power dissipation is its periodic refreshes, background and
leakage power. The newly emerged non-volatile memory
(NVM) technologies such as spin-torque-transfer random-
access memory (STT-RAM), phase-change random-access
memory (PCRAM), and resistive random-access memory
(ReRAM) are believed to alleviate these limitations. They
have been advocated as potential DRAM replacements at
various levels (main memory, die-stacked cache). While
these technologies could supplement or supersede conven-
tional memory technologies at various levels in the memory
hierarchy, they have their own limitations. Simply replace-
ment of DRAM with NVM technologies is not a viable op-
tion because the latter suffers from high write energy and
write endurance issues.

This opens up new research directions and calls for ex-
ploration of appropriate memory technologies at each mem-
ory level. An ideal memory system would use the best of
many memory technologies and fulfill the diverse demands
of modern days applications. To design such system, it is vi-
tal for computer architects to use simulation tools and study
the suitability of each technology. NVMain [24] is one such
simulator that provides support for both DRAM and NVM
technologies. It models energy and cycle accurate operations
of main memory system. In its extended version NVMain
2.0 [25], die-stacked DRAM cache was introduced with the
Alloy [26] model.

In this paper, we present extensions for the publicly avail-
able version of NVMain (NVMain 2.0) simulator. We pro-
vide a reference implementation of a new SRAM cache which
could be used at various cache levels. For die-stacked cache,
we provide implementation of various latency optimizations.
To demonstrate this extension, we model a recently proposed

high associativity cache organization called LAMOST [9]. A
supporting module called tag-cache (an SRAM based small
memory unit that stores the tag information of recently ac-
cessed sets as explained in [14, 9, 20]) is employed on top
of LAMOST to mitigate high DRAM cache tag lookup la-
tency. We modify the memory controller and other NVMain
modules to make provision for the new extensions.

While some of these architectural features such as tag-
cache support specific cache organizations [17, 9], others
such as SRAM cache model can be used to model any level
in the memory hierarchy. All the new modules are made
configurable and can be enabled or disabled easily. Config-
uration parameters of each individual module are passed in
a config file and can be varied as per design requirements.
We believe these new features make NVMain more power-
ful and increase its application scope. Considering the de-
sign objectives, designers have more freedom to (a) model
customized memory systems (b) choose memory technology
for each level from a wider list of available options (DRAM,
NVM, SRAM) (c) select the number of cache/memory levels
(d) choose appropriate cache organization (Alloy, LAMOST,
LAMOST with tag-cache) for die-stacked memory.

2. RELATED WORK
Simulation has become a powerful tool in computer archi-

tecture community that empowers designers to model their
desired systems and predict the design objectives before-
hand. Architectural simulation is mainly used for design
space exploration and performance evaluation considering
all design goals and performance parameters. As such, ev-
ery leading processor manufacturing industry has developed
its own simulation tool(s) to model new processor models
and assess their feasibility. For instance, Mambo [4] by IBM
is designed to model their past and future power designs.
Its architectural support ranges from cell to embedded sys-
tem to supercomputer (BlueGene, POWER7). Similarly,
SimNow [2] by AMD and HAsim [23] by Intel are used to
evaluate their future systems respectively. Some high speed
architectural simulators have been developed to reduce the
simulation time. Sniper [5], Graphite [21], SlackSimslack-
sim, P-Mambo [30] and COTSon [1] are to name a few.
Open source system simulators such as Gem5 [3] exist that
not only target micro-architecture of the processor but en-
compasses the whole system architecture. In a recent work
[19], Gem5 has been coupled with SystemC that opens up
a whole new set of options for system level design space
exploration.

Unfortunately, some of these micro-architecture and system-
level simulators do not model the memory system in detail.
They consider a simplistic memory model without consid-
ering the complex organization of modern memory systems.
More often, a fixed latency is associated with a memory ac-
cess. In more advanced CPU simulators, bank conflicts are
considered and every time it occurs, a fixed wait latency is
added to the overall access time. This model significantly
underestimates the actual characteristic of the memory sys-
tem. This necessitates design of specialized memory simula-
tors that consider all possible design features, model actual
bus latencies, and report correct timing and energy param-
eters.

Of late, many such memory simulators have been pub-
lished. DRAMSim [29], the first publicly available memory
simulator, was designed to offer support for multiple types of

Ranks

Command:
RAS, CAS, PRE,

REF, PowerDown,
PwerUp

Onchip
Offchip
(optical)

Address
Mapping

Transla
tor

prefetcher visualizer

Request Scheduling

R
ef

re
sh

En
d

u
ra

n
ce

Simulator
Interface

QueueRequest

G
EM

5
, T

ra
ce

 F
ile

FFindStarvedReq
FindCloseBank

FindRBHit
FindOldestReq

Sub Array

E
n

d
u

ra
n

c
e

Bank
Cache
Bank

Bank

Interconne
ct

Memory Controller

Figure 1: Overview of the NVMain Architec-
ture [24]

memory technologies (SDRAM, DDR) and allow exploration
of memory system concepts. Presently, its extended version
DRAMSim2 [27] is openly available and is broadly used. It
is a C++ based cycle-accurate model that provides most
of the memory system design features. Design goals of the
simulator were to keep it small and portable. However, this
simplicity in controller architecture has barred it to be com-
parable with more recent and performance optimized con-
trollers. Other memory simulators such as Ramulator [16],
DRAMSys [15], NVMain and integrated simulators such as
[28] have been proposed with different design goals. For
instance, Ramulator offers support for an extended list of
DRAM standards. DRAMSys provides a holistic framework
that takes into consideration new DRAM based memory so-
lutions such as JDEC DDR4, WIDE I/O, and HMC. It cap-
tures new aspects such as temperature and retention fail-
ures. In contrast to all these simulators, NVMain focuses
on emerging NVM technologies while keeping the DRAM
support intact. A brief comparison of these memory simula-
tors with reference to design options is presented in Table 1.

3. SIMULATOR ARCHITECTURE
NVMain is a flexible memory simulator that supports

DRAM and NVM technologies. For DRAM, it follows the
same approach as other DRAM specific simulators in order
to capture important features. For NVM devices, beside
modeling timing and power parameters, it models NVM spe-
cific features as well; such as endurance, high write energy,
and multi-level cells (MLC) capability. Major modules of
the NVMain simulator include timing, power and endurance
models. NVMain 2.0, the currently available version, ex-
tends support for sub-array level parallelism and MLC op-
erations. Object hooks are introduced to strengthen the sim-
ulator hierarchy and allow requests inspection at a particular
level.

3.1 NVMain Overview
NVMain is an object based model where every module is

created as a separate object that can easily be integrated
to or detached from the simulator. An overview of the base
architecture of NVMain is shown in Figure 1.

Every object in the NVMain simulator such as the mem-
ory controller, the interconnect, the rank or the bank is re-
sponsible to model and capture its timing parameters. The

Table 1: Comparison of the Memory Simulators
Simulator DRAM die-stacked cache NVM Alloy [26] LAMOST [9] tag-cache SRAM

DRAMSim2 3 7 7 7 7 7 3

NVMain2.0 3 3 3 3 7 7 7

Ramulator 3 7 7 7 7 7 3

DRAMSys 3 7 7 7 7 7 3

NVMainExt (proposed) 3 3 3 3 3 3 3

timing parameters for DRAM devices are taken from their
manufacturer data-sheets while for SRAM and NVM tech-
nologies, these parameters are obtained from CACTI [22]
and NVSIM [8] tools respectively. The corresponding mem-
ory parameters such as tRCD, tRP , tBURST are provided in
a memory configuration file to the simulator. The simula-
tor takes another configuration file that describes the overall
memory system hierarchy and general configuration param-
eters such for number of ranks, banks, rows, columns, ad-
dress mapping scheme, decoders, row buffer policies, queue
models and queue sizes.

NVMain offers both single bank and inter-bank timing
models. The single bank timing model tracks most com-
monly found parameters such as tRCD, tRP and tCAS etc.
The inter-bank timing model restricts the power consump-
tion and current drawn by a single bank or different banks
within a fix time period by introducing parameters like tFAW

(four activation window) and tRRD (row to row activation
delay). All timing parameters are considered before issuing a
memory command to a particular module. Error message is
generated in case a module violates the timings constraints.

In its power model, NVMain computes per device energy
consumption where each device consists of multiple banks.
The total energy consumption is calculated as the sum result
of energy consumptions of all devices. For DRAM devices,
the typical IDDx parameters are used to measure power con-
sumption of read and write operations. For NVM technolo-
gies, to calculate the actual power consumption, NVMain
takes per bit write energy from NVSIM. The endurance
model keeps track of the total number of bits written and
their values. Energy of the unchanged bits is subtracted
from the total write energy consumption.

While the simulator provides a solid base for exploring
the optimal memory system, the design features it offers
are limited. The missing features include: a wide array of
memory technologies, configurable number of memory levels,
flexible cache controllers optimized for various performance
parameters, tag-cache, predictors and multiple row buffer
mapping schemes. The object-oriented structure of NVMain
encourages development of new extensions and allow their
easy integration.

3.2 NVMain Extensions
We provide reference implementations of new architec-

tural features for NVMain that could be used to propose
future memory systems. The new extensions strengthen the
relatively simple cache model of the current NVMain simula-
tor and opens up new design directions. Figure 2 highlights
these features and demonstrates how they fit in the overall
memory system design.

As highlighted in Figure 2, the die-stacked last level cache
(LLC) can be modeled as DRAM or NVM technologies. For
cache organization, designers have the choice to select appro-

In
te

rc
o

n
n

ec
t

LAMOST Alloy

Configuration Manager

Sy
st

em

C
o

n
fi

gu
ra

ti
o

n

Config parameters

B
ac

ki
n

g
M

ai
n

M

em
o

ry

M
em

o
ry

 C
o

n
tr

o
lle

r

Rank

Bank

Bank

SRAM DRAM NVM

L1 L2 L3 Die-Stacked Cache

Tag
cache

Figure 2: Extended NVMain Architecture (The
green color highlights the extensions)

priate scheme depending on the application requirements.
Alloy cache [26] gives the best performance for applications
having reduced miss-rate. Conversely, LAMOST [9] and
LH [17] cache organizations perfom better than Alloy cache
for applications having higher miss rates.

The proposed SRAM module can be used to model any
cache level in the memory hierarchy. Typically, CPU simu-
lators model only lower cache levels (level 1, 2 and 3). Ex-
isting NVMain simulator can be used to model die-stacked
DRAM cache, typically used as LLC. Our extended version
provides support to model multi-level cache hierarchy where
lower cache levels can be realized with SRAM technology
while higher cache level can be implemented using DRAM
or NVM technology.

3.2.1 SRAM Cache Model
SRAM is a fast memory technology. It has small access

time compared to DRAM and NVM technologies but is more
expensive. It is used at lower cache levels (close to the
processor) to bridge the processor and (slow)memory speed
gap. NVMain simulator in its present form does not support
SRAM. As a result, it can not model the lower cache levels.
We introduce a reference model of SRAM cache which can
be used as Level 1(L1), Level 2(L2) or Level 3(L3) cache.

To model the actual complex memory system, designers
should define all cache levels in the memory hierarchy. Un-
fortunately, existing memory simulators offer only higher
cache level(s). With this SRAM model, NVMain is capa-
ble to model the entire memory system by its own. Ev-
ery parameter of the SRAM model is configurable and can
be changed as per design goals. We adopt existing cache
bank model of the simulator with varied parameters to im-
plement SRAM specific functionalities. For every new re-
quest, the address translator of the SRAM module retrans-
lates the physical address of the request and sets the SRAM
related memory partitions. The SRAM cache is checked for

a hit/miss and based on the type of request, it is serviced
accordingly (detailed discussion on the flow of commands
to serve a read or write request is beyond the scope of this
paper). A sub-request (e.g. cache line eviction, cache fill),
if any, generated by this module is solely owned by it and
has to be deleted after its completion. Further, this module
forwards request to the next level in the memory hierarchy
based on the system configuration. The next level, if exists,
is added as a child to the SRAM module and can be accessed
via an object hook. Appropriate requests and responses are
generated between parent and child modules where parent
corresponds to the current level and child corresponds to the
next level in the memory hierarchy.

3.2.2 LAMOST Cache Organization
Presently, NVMain implements the Alloy cache organiza-

tion for its die-stacked cache and it is by-default selected.
Designers have no choice to change the cache organization.
Alloy cache is a direct-mapped model that suffers from high
miss rate and high off-chip memory latency. We implement
a new cache organization that overcomes the limitations of
the Alloy cache. For demonstration, we model LAMOST
with a supporting tag-cache that reduces the cache hit/miss
latency. In addition, we develop new row and set mapping
schemes and make necessary changes to the memory con-
troller. More details of the mapping schemes can be found
in [10].

3.2.3 Tag Cache
Tag cache, fundamentally, is not a level in the memory

system. Rather, it is a supporting unit for the die-stacked
cache. Tag-cache stores the tag information of the most re-
cently accessed cache sets. Future accesses to the same set(s)
in die-stacked cache result in reduced access latency. Cache
organizations such as ATCache [14] and LAMOST [9], when
used with tag-cache, positively benefit from it. Detailed ar-
chitectural benefits of tag-cache and various cache organiza-
tions can be found in [26, 14, 17, 10, 20]. For correctness,
the simulator makes sure the right system configuration and
generates an error otherwise.

4. EVALUATION
NVMain can be used in both trace based simulation as

well full system simulation mode. For full system simula-
tion, we connect NVMain to gem5 by applying the publicly
available patch and run SPEC benchmarks on it. Gem5
uses the memory system modeled by NVMain instead of us-
ing its default memory model. An abstract overview of the
full system configuration is presented in Figure 3. We use
Simpoint [12] in order to reduce the benchmarks execution
time. The idea is, to run a sub-set of instructions (for each
benchmark) that imitates the behavior of the whole bench-
mark. In trace based simulation, we generate traces from
Gem5 and provide trace file(s) as input to the NVMain sim-
ulator.

For functional verification of the new extensions, we use
random mixes of the SPEC2006 [13] benchmarks. For the
same system configuration, we run SPEC benchmarks in
sim-zesto simulator [18] and NVMain. For ten experimen-
tal runs, we observe performance parameter (miss-rate) of
L1, L2 and L3 caches and report the average measures in
Table 2.

Table 2: Functional Verification of the New Exten-
sions

Cache Level
sim-zesto

normalized
miss-rate

NVMain
normalized
miss-rate

Difference(%)

L1 (32 KB) 1.00 0.96 +4
L2 (256 KB) 1.00 1.09 −9
L3 (8 MB) 1.00 0.95 +5

N
V

M
ain

Gem5

Simpoint

b
b

vs

ch
e

ckp
o

in
ts

config

Sim
Cycles

Stats

Trace
File

Gem5
Mem
Ref

Trace
Based

0

1

bzip2

Figure 3: Full system simulation overview

Simulation results of the NVMain are in ±10% of the sim-
zesto results. The memory model in sim-zesto is simplistic
and can not accurately model LLC. Therefore, for the cache
organization scheme LAMOST, we compare our results with
the actual results presented in [9] and observe that they are
in the accuracy range of ±5%.

For speed comparison, we run both sim-zesto and NVMain
for 3B (3 × 109) instructions and observe that NVMain is
around 10 times faster than sim-zesto. The timing and en-
ergy models of NVMain have already been verified. How-
ever, in future, we plan to verify these models for new ex-
tensions as well using Verilog model (for timing) and the
publicly available DRAMPower2 [7] for (energy).

5. CONCLUSIONS
We have presented an extended version of the NVMain

simulator. Considering the fundamental design goals — flex-
ibility, simple user interface and scalability — of the simula-
tor, we have provided reference implementations of SRAM
cache, an optimized cache organization for die-stacked cache
and a tag-cache model. The newly added design features
widen the list of design options and enable customized de-
sign modelling. We have outlined the existing simulator ar-
chitecture in brief and the new extensions in detail. We have
run random mixes of the SPEC benchmarks in NVMain and
observed that simulation results of the new extensions are
in conformance with state-of-the-art. We will use this sim-
ulator to investigate memory systems with emerging mem-
ory technologies like [11] in the context of the Orchestration
project [6].

Acknoledgments
This work was partially funded by the German Research
Council (DFG) through the Cluster of Excellence ‘Center
for Advancing Electronics Dresden’ (cfaed).

6. REFERENCES
[1] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero,

and D. Ortega. Cotson: Infrastructure for full system
simulation. SIGOPS Oper. Syst. Rev., 43(1):52–61,
Jan. 2009.

[2] R. Bedicheck. Simnow: Fast platform simulation
purely in software. In Hot Chips 16, 2004.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, Aug. 2011.

[4] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony,
A. Gheith, R. Rockhold, C. Lefurgy, H. Shafi,
T. Nakra, R. Simpson, E. Speight, K. Sudeep,
E. Van Hensbergen, and L. Zhang. Mambo: A full
system simulator for the powerpc architecture.
SIGMETRICS Perform. Eval. Rev., 31(4):8–12, Mar.
2004.

[5] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper:
Exploring the level of abstraction for scalable and
accurate parallel multi-core simulation. In Proceedings
of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 52:1–52:12, New York, NY,
USA, 2011. ACM.

[6] J. Castrillon, M. Lieber, S. Klüppelholz, M. Völp,
N. Asmussen, U. Assmann, F. Baader, C. Baier,
G. Fettweis, J. Fröhlich, A. Goens, S. Haas, D. Habich,
H. Härtig, M. Hasler, I. Huismann, T. Karnagel,
S. Karol, A. Kumar, W. Lehner, L. Leuschner, S. Ling,
S. Märcker, C. Menard, J. Mey, W. Nagel, B. Nöthen,
R. Peñaloza, M. Raitza, J. Stiller, A. Ungethüm,
A. Voigt, and S. Wunderlich. A hardware/software
stack for heterogeneous systems. IEEE Transactions
on Multi-Scale Computing Systems, Nov. 2017.

[7] K. Chandrasekar, B. Akesson, and K. Goossens.
Improved power modeling of ddr sdrams. In
Proceedings of the 2011 14th Euromicro Conference on
Digital System Design, DSD ’11, pages 99–108,
Washington, DC, USA, 2011. IEEE Computer Society.

[8] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. Nvsim: A
circuit-level performance, energy, and area model for
emerging nonvolatile memory. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 31(7):994–1007, July 2012.

[9] F. Hameed, L. Bauer, and J. Henkel. Simultaneously
optimizing dram cache hit latency and miss rate via
novel set mapping policies. In 2013 International
Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), pages 1–10, Sept
2013.

[10] F. Hameed, L. Bauer, and J. Henkel. Architecting
on-chip dram cache for simultaneous miss rate and
latency reduction. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 35(4):651–664, April 2016.

[11] F. Hameed, C. Menard, and J. Castrillon. Efficient
stt-ram last-level-cache architecture to replace dram
cache. In Proceedings of the International Symposium
on Memory Systems (MemSys’17), MEMSYS ’17,

pages 141–151, New York, NY, USA, Oct. 2017. ACM.

[12] G. HAMERLY. Simpoint 3.0 : Faster and more
flexible program analysis. Workshop on Modeling,
Benchmarking and Simulation, 2005, 2005.

[13] J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4):1–17, Sept.
2006.

[14] C.-C. Huang and V. Nagarajan. Atcache: Reducing
dram cache latency via a small sram tag cache. In
Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14,
pages 51–60, New York, NY, USA, 2014. ACM.

[15] M. Jung, C. Weis, and N. Wehn. Dramsys: A flexible
dram subsystem design space exploration framework.
IPSJ Transactions on System LSI Design
Methodology, 8:63–74, 2015.

[16] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast
and extensible dram simulator. IEEE Comput. Archit.
Lett., 15(1):45–49, Jan. 2016.

[17] G. Loh and M. D. Hill. Supporting very large dram
caches with compound-access scheduling and
missmap. IEEE Micro, 32(3):70–78, May 2012.

[18] G. H. Loh, S. Subramaniam, and Y. Xie. Zesto: A
cycle-level simulator for highly detailed
microarchitecture exploration. In 2009 IEEE
International Symposium on Performance Analysis of
Systems and Software, pages 53–64, April 2009.

[19] C. Menard, J. Castrillón, M. Jung, and N. Wehn.
System simulation with gem5 and systemc the
keystone for full interoperability. 2017.

[20] J. Meza, J. Chang, H. Yoon, O. Mutlu, and
P. Ranganathan. Enabling efficient and scalable
hybrid memories using fine-granularity dram cache
management. IEEE Computer Architecture Letters,
11(2):61–64, July 2012.

[21] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.
Graphite: A distributed parallel simulator for
multicores. In HPCA - 16 2010 The Sixteenth
International Symposium on High-Performance
Computer Architecture, pages 1–12, Jan 2010.

[22] N. Muralimanohart and N. Balasubramonian,
R.and Jouppi. Optimizing NUCA Organizations and
Wiring Alternatives for Large Caches with CACTI
6.0. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture
(MICRO), pages 3–14, December 2007.

[23] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and
J. Emer. Hasim: Fpga-based high-detail multicore
simulation using time-division multiplexing. In 2011
IEEE 17th International Symposium on High
Performance Computer Architecture, pages 406–417,
Feb 2011.

[24] M. Poremba and Y. Xie. Nvmain: An
architectural-level main memory simulator for
emerging non-volatile memories. In 2012 IEEE
Computer Society Annual Symposium on VLSI, pages
392–397, Aug 2012.

[25] M. Poremba, T. Zhang, and Y. Xie. Nvmain 2.0: A
user-friendly memory simulator to model
(non-)volatile memory systems. IEEE Computer
Architecture Letters, 14(2):140–143, July 2015.

[26] M. K. Qureshi and G. H. Loh. Fundamental latency
trade-off in architecting dram caches: Outperforming
impractical sram-tags with a simple and practical
design. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, pages 235–246,
Washington, DC, USA, 2012. IEEE Computer Society.

[27] P. Rosenfeld, E. Cooper-Balis, and B. Jacob.
Dramsim2: A cycle accurate memory system
simulator. IEEE Comput. Archit. Lett., 10(1):16–19,
Jan. 2011.

[28] J. Stevens, P. Tschirhart, C. Mu-Tien, I. Bhati,
P. Enns, J. Greensky, Z. Chisti, L. Shih-Lien, and

B. Jacob. An integrated simulation infrastructure for
the entire memory hierarchy: Cache , dram, nonvolati
le memory, and disk. Intel Technology Journal,
17(1):184 – 200, 2013.

[29] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes,
A. Jaleel, and B. Jacob. Dramsim: A memory system
simulator. SIGARCH Comput. Archit. News,
33(4):100–107, Nov. 2005.

[30] K. Wang, Y. Zhang, H. Wang, and X. Shen.
Parallelization of ibm mambo system simulator in
functional modes. SIGOPS Oper. Syst. Rev.,

42(1):71–76, Jan. 2008.

LXVI

Work in progress paper : A Fault
Injection Platform for Early-Stage
Reliability Assessment

LXVII

A Fault Injection Platform for Early-Stage Reliability Assessment
Alexandre CHABOT
CEA, LIST - LAMIH

Software Reliability and Security Laboratory
P.C. 174, Gif-sur-Yvette, 91191, France

alexandre.chabot@cea.fr

Reda NOUACER
CEA, LIST

Software Reliability and Security Laboratory
P.C. 174, Gif-sur-Yvette, 91191, France

reda.nouacert@cea.fr

Ihsen ALOUANI
LAMIH

University of Valenciennes
Valenciennes, 59300, France

ihsen.alouani@univ-valenciennes.fr

Smail NIAR
LAMIH

University of Valenciennes
Valenciennes, 59300, France

smail.niar@univ-valenciennes.fr

ABSTRACT
With new integration rates, embedded systems sensitivity to envi-
ronmental conditions has increased drastically. Thus, presenting
reliable architectures is one of the major concerns for designers.
During the development life-cycle of fault-tolerant computer sys-
tems, the dependability insurance is a complex and critical task.
This work in progress paper presents a technique for reliability
evaluation of embedded systems at early-stage by demonstrating
the functionality and usage of simulation based fault injection. The
proposed technique takes into account both the environmental
conditions and the behavior of the application. Our results bring
a flexible fault injection methodology and show its usability for
reliability evaluation during simulation phase.

KEYWORDS
Fault injection, environmental conditions, application behavior,
reliability, virtual prototype
ACM Reference Format:
Alexandre CHABOT, Reda NOUACER, Ihsen ALOUANI, and Smail NIAR.
2018. A Fault Injection Platform for Early-Stage Reliability Assessment. In
Proceedings of HIPEAC RAPIDO Conference (RAPIDO’18). ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Electronics are more and more present on our daily life. In fact,
smart and connected systems are expected to be present practically
everywhere in the future decade. This trend is made possible by the
progress manufacturers and designers performed towards provid-
ing high performance platforms. However, this performance race
has led to a degradation in embedded systems reliability. In fact,
the reliability is a direct reflection of systems sensitivity to tran-
sient errors as well as to aging. Soft errors are caused by transient
events that corrupt sequential and combinational elements and
their impact is increasing dramatically in mainstream computing
systems. Therefore, robustness techniques have been proposed to
reach acceptable reliability levels. One of the hardware techniques
consists of separating memory cells accessed by the same address
to avoid multiple bit flips for the same stored word [10]. We can

RAPIDO’18, January 2018, Manchester, UK
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

also cite the well-known error correcting code memory that is a
computer data storage able to detect single bit flip. At software
level, techniques such as task redundancy and the work of Huang
et al. [14] on scheduling algorithms. Finally, CLEAR project [8]
have compared techniques at different system layers.

The evaluation of embedded systems reliability is a complex task
and different techniques are used during different development
steps. Usually, reliability is linked to hardware manufacturing pro-
cess and environmental conditions. However, having implemented
robustness techniques at different system levels, it appears impor-
tant to take it into account while evaluating the system reliability
to avoid excessive design margins.

In this paper, we focus on transient errors and especially soft er-
rors. To evaluate the system reliability, we propose a fault injection
model that takes into account all parameters impacting reliability.
In addition, our model takes into account the link between the ap-
plication behavior and the fluctuation of the memory temperature,
this link is exhibited in Section 3.1.2.

The rest of this work in progress paper is organized as follows.
In the state of the art, Section 2, we discuss how fault injection
associated to virtual platforms helps to ensure the correct function-
ing of critical systems. Then, in the third Section, we present our
fault injection model. In the fourth Section, we discuss the evalua-
tion of the proposed approach using UNISIM-VP [18] simulation
environment and illustrate its flexibility by implementing some as-
pects of FIDES standard [11]. Finally, we present some preliminary
experimental results.

2 STATE OF THE ART
In the domain of reliable embedded system design, many techniques
have been considered to measure the robustness of an architecture.
We can list here after the main ones:

• Analytical models: this technique can be used in the early
phases of the design. It uses high level modeling of the system
and approximations to determine the most critical functions
in terms of reliability. We can cite the work done in SOPHIA
[4]

• Prototyping: this method is often the last step of the devel-
opment and the goal is to realize as less as prototypes as
possible as it is a very expensive step [21].

RAPIDO’18, January 2018, Manchester, UK Alexandre CHABOT, Reda NOUACER, Ihsen ALOUANI, and Smail NIAR

• Simulation: this technique is a trade-off between the analyti-
cal modeling and prototyping.

Since we will use simulation for reliability analysis, in the next we
present a simulation based reliability assessment.

2.1 Simulation based reliability assessment
Simulation is used in the early design phase to ease the co-development
of hardware and software [7]. It allows to identify mismatches
that can occur during the integration phase. Early identifying mis-
matches helps in reducing the development cost as shown Figure 1.
The co-development using simulation has two major advantages.
First, the prototyping phase is reduced as less changes are needed.
Later an issue is discovered more expensive is to correct it [21],
and due to context of critical systems, the correction is mandatory.
Second, the number of system errors discovered after commercial-
ization is reduced. Because simulation allows to put the system in
a given state, it is easier to test all possible execution paths and
thus to entirely test given functionalities. Setting a system state is

Figure 1: Development cost function of time using or not
Virtual Platforms

harder using prototyping than using simulation [23]. Moreover, it
costs time to repeat tests using prototyping, which is not the case
in simulation.

Another advantage of simulation is the possibility to test deeply
critical functions for critical systems. Simulation also reduces devel-
opment costs, since the developed virtual platform can be reused
in other projects using the same architecture. This is especially
important for critical systems, because the developed platforms
are supposed to be used a long time. Indeed, it is costly to certify
an architecture for critical systems and that explain why the same
platform is reused for different projects [20].

Nonetheless simulation has disadvantages. First, the virtual plat-
form is an approximation of the system, it is not fully accurate.
Those approximations are used to speed up the computation, a
trade-off has to be made between the speed of computation and the
accuracy of the simulation run. Second, even if the cost is reduced
by reusing previously developed virtual platforms, it takes time at
the beginning to develop a new virtual platform.

2.2 Fault Injection
Simulation is, in first way, used to test the correct functioning of
the software onto a simulated hardware. The simulated hardware
is supposed without defects and the environment is thus not taken
into account.

In order to measure the reliability of a system, the classic simu-
lation method is extended with a fault injection module. The fault
injection module job is to simulate environmental perturbations
that occur during the functioning of the system. In real world, the
perturbation origin is either a particle that strikes the hardware
and modifies the current state of the system or a hardware problem
such as a latches fail. The disruption injected is materialized during
simulation by a classic run perturbation. For example, it’s possible
to create a fault injection by modifying a bus value, flipping a bit in
memory, or even by changing the next instruction to execute. Fault
injection is used to verify the correct and time limited response of
the system, even in the case of a perturbation. Originally used for
reliable systems, the fault injection starts to be a tool in security
especially in the context of hardware attacks such as explained in
[22].

In a plethora of previous works, the fault injection module was
based on a probabilistic model [24]. Indeed, the Poison’s lawwith a λ
constant representing the failure rate, governed the reliability of the
system. The first model is thus purely random and the disruption of
the system depends on two draws: one representing the disruption
moment and the other representing the type of disruption. For the
random injection, the equation representing the reliability law is
Equation (1), where λ is the constant failure rate R is the reliability
law,MTTF is the mean time to failure and t is the time.

R(t) = exp(−λ ∗ t) (1)

MTTF = 1/λ (2)
Using this model implies to randomly test systems critical func-

tions. However, functions have not the same criticality. In order to
deeply validate a system with this approach it takes a long time
as some runs does not test critical functions. To solve this issue
and thus to gain time, a first approximation to the purely random
approach was to focus injection moments on critical path of ex-
ecution [24]. This second approach helps to reduce the time of
simulation. However, a big random part is still present in the model.
This random part is inefficient in our opinion and push us to work
on fault injection model.

3 PROPOSED APPROACH
As explained earlier, fault injections used were mainly random. In
addition, the model takes only into account the time and assume
a constant failure rate that is far from the reality. Indeed, in real
conditions, the application behavior may modify the failure rate of
the system. Approximations can lead either to an over-protected
architecture by robustness techniques that consumes a large part of
execution time or power or an under-protected architecture.We aim
to propose a more representative and configurable fault injection
model. This new model can take into account many parameters
which have the potential to impact the system reliability. As the
application behavior is also taken into account, the model evolves
during the simulation. In the idea to optimize robustness techniques

A Fault Injection Platform for Early-Stage Reliability Assessment RAPIDO’18, January 2018, Manchester, UK

and simulation time, the model will also take into consideration
the the proposition to focus onto critical paths developed in [24].

A new phenomenon ignored by previous models is taken into
account in our approach: the single event multiple bit upsets [9].
In previous approach, a perturbation was directly linked to a single
event for the hardware. For the memory, in a case of a single event
single upset, a perturbation leads to a single bit flip. However, this
approach is not valid anymore. Indeed, for real systems the majority
of events, or strikes, lead to more than one bit flip. This may happen
especially in SRAM-based memories for technologies under 40nm
[9]. Up to our knowledge, this parameter is not yet considered by
implemented fault injection model at the simulation level. It is an
issue because of the under-evaluation of the system reliability that
is linked to the lack of multiple bit upset consideration.

3.1 Qualitative Model
As said before, we consider problematical to continue with the
random injection model as it is an approach far from the reality.
To solve this problem, we present in this part an evolving fault
injection model. This model has the characteristics to be more
general and dynamic during simulation.

This model such as illustrated in Figure 2 is created around the
answer of three questions:

(1) What kind of fault do we want to inject ?
(2) Where and when do we have to inject the fault ?
(3) What is the probability that the fault would happen ?

Fault Injection
Model

Environmental
Conditions

Application
Behavior

Manufacturing
Process

Fault Injection
Probability

Fault
Location

Fault
Type

Figure 2: Schema of the Fault Injection Model

3.1.1 Fault Injected Type. In this part, we explain why the multi-
ple bit upset is important to take into account and how we consider
it into our fault injection model. With the technology scaling down,
transistors followed (until 60nm) a decrease in term of sensitivity to
particle strikes, however, this is not true anymore and below 60nm
transistors are more and more sensitive to particle strikes [9]. In
addition, we need to consider that the integration rate has increased
during all this time, it means that for the same area more transistors
are contained. Even if new transistors are not as sensible as their
oldest, the number of soft error for the same area is constantly
rising generation after generation.

Transistor miniaturization goes with the rise of multiple bit upset
presence in the case of particle strikes. Multiple bit upset roads to
become the majority of single event results as integration improves
such as showed in Figure 3 in [9].

Figure 3: Multi-cell error percentages by technology nodes

During our investigation we did not find a fault injection model
taking into account those multiple bit upsets. Regarding our re-
search it seems important to both inject single upsets and multiple
upsets. To achieve this wish, we investigate more deeply in the
direction of multiple bit upsets and we identify the presence of
more probable forms of multiple bit upsets, we call them injection
patterns. In [19], we can clearly identify a higher probability for
the memory studied that a 2-bit upsets involves two vertically con-
nected cells than two horizontally connected cells. It exists thus a
predominance of some patterns and we want to exploit this char-
acteristics in our fault injection model. Moreover, depending on
the technology the number of bit flipped during a particle strike
evolves. We also take this characteristic into account in our fault
injection model.

3.1.2 Location of the Injection. In previous approaches, the mo-
ment and the location of the injection were due to random number
draws. However, this randomness does not fit in our wish to make
the fault injection model more representative of the reality. It has
been decided to take into account the behavior of the application
to determine the location of the injection. In this part we are first
going to validate and justify a statement needed to determine the
location of injection: the frequency of access to a given area in
memory impacts the sensitivity of this area to soft errors. Second,
we will explain how we take it into account into our model to
determine the location of the injection.

To justify the link between memory access and soft error, we
first establish a link between the locality of memory access and
the increase in temperature. Then we justify the link between the
temperature of the memory and its sensitivity to particle strikes
and thus to soft errors. The following logic resumes our path of
thinking.

MemoryAccess → Temperature → SER

Memory access locality and Temperature relation. By accessing
to a given area in memory (read or write operation), we modify
the value of the current and by that way, we modify the power
consumption of this area. Bymodifying bits inmemorywe thus heat
up the area accessed as the temperature flows to close areas. This
phenomenon is sometimes considered negligible [17]. However, it
exists side channel attacks where the temperature modification due
to operations is observed to permit attacks [15]. This convinces us to

RAPIDO’18, January 2018, Manchester, UK Alexandre CHABOT, Reda NOUACER, Ihsen ALOUANI, and Smail NIAR

consider this temperature modification as a tangible phenomenon.
There is thus a direct link between the locality of memory access
and the temperature modification.

Temperature and Soft Errors relation. We are going to justify the
link between the memory temperature and the soft error rate. The
work leaded by Bagatin [1] analyzes 5 commercial-available SRAMs,
but only give conclusion on three of them due to manufacturing
techniques that modify results for the two others and especially
show unwanted behavior for critical memory. Indeed, the two out-
classed showed single event latch-up during testing phase at room
temperatures, those events are classically observed at the highest
operating temperature. For the three device remaining, here follows
a list of conclusion that have been raised:

(1) It exists a correlation between temperature and soft error
rate

(2) The temperature increasing doesn’t necessarily lead to an
increase into the soft error rate. However, the manufacturing
process must be taken into account to determine the shape
of the SER function of the temperature.

(3) The supply voltage of the memory modifies the tempera-
ture impact onto the soft error rate. By reducing the supply
voltage we reduce the impact of the temperature.

The variation of the soft error rate due to the temperature is modest
but it is still valid to take it into account [16]. The main conclusion
of the paper [1] says that there is a difference of up to 20% between
the soft error at room temperature and temperature at the extrema
of the device temperature range. Those 20% are not negligible fin
the case of reliable systems. We thus establish a direct link between
the temperature memory and the soft error rate of this memory.

Location of the Injection in our Model. We demonstrated above
the link between the number of access to memory and the soft
error. This relation is going to be taken into account in our model
as our first step in the direction of taking into account the appli-
cation behavior. More precisely, we weight the value of the fault
injection moment by the analysis of the frequency of access to the
memory (i.e. temporal locality). We implemented only a weighting
of memory areas based on the locality, this weighting is introduced
to ensure that all areas are evaluated from the reliability point of
view.

3.1.3 Fault Probability. In our approach, the injection moment
depends on the failure rate of the system. Such as showed in equa-
tion 1, the failure rate governs this equation. We didn’t succeed
into finding a better way to model the phenomena of soft errors.
Nonetheless, the failure rate depends on environmental conditions
and on manufacturing process. To model as well as possible this
dependency on environment and the eventuality for a system to
change of functioning conditions, we reuse the principle of life
phases used by the FIDES group [11]. Those life phases associated
to an environment and a duration are going to govern the modifica-
tion of the failure rate depending on life phases and thus the failure
rate would not be static anymore. This approach is in our opinion a
way to answer a bigger number of critical system than a fixed fail-
ure rate as it is not static anymore. However, using only the failure
rate to determine the fault injection timing is not feasible for com-
plex system. Indeed, an entire coverage of all possible injections

is impossible during simulation due to the time of computation
needed to simulate all possible scenarios. Due to this assessment, it
is rare to be complete from the test point of view. There is thus a
need to reduce the number of simulations for a relevant exploration
and some solutions have been explored.

A solution explored is to test only critical functions and not
to depend on the failure rate. This approach leads to unexplored
scenarios and does not test links between critical and not critical
functions. Another approach is to test only most taken path of exe-
cution and use the failure rate in association. This second approach
raises concerns also regarding unexplored scenario and evaluation
of rarely called critical functions. We thus consider important to
mix task criticality with failure rate to obtain a more pertinent fault
injection model. We start our model reusing the random part used
in the work of Huang et al. in [14], that considers all tasks sensible
to perturbation and we aim to integrate tasks criticality in future
works. The failure rate and tasks criticality are thus necessary to
determine our fault injection probability. This failure rate is going
to govern our injection decision such as shown Figure 4.

3.2 Integration of FIDES
Environmental conditions are most of the time considered one by
one while studying their impact on reliability. We can cite papers
like [13] and [25] which consider only the temperature or in the
other case only the power consumption as environmental condition
modifying the failure rate.

In order to provide a global methodology for evaluating reliabil-
ity of critical systems during simulation, we consider in our model
what has been done by the FIDES group and precisely their guide
for reliability [11]. FIDES global electronic reliability engineering
methodology guide is a global approach as it addresses all environ-
mental conditions. This guide is composed by two major parts, only
the first part regarding the reliability evaluation is used in our re-
search. This methodology is used to compute the reliability of each
electronic component taking into account manufacturing process
and environment. Here is the list of environmental conditions that
are taken into account in our model: life phases of the system, ambi-
ent temperature, temperature cycles, relative humidity, vibrations,
saline pollution, environmental pollution, application pollution and
chemical protection. Combination of those parameters allows to
address different critical system environmental conditions. Adding
to those environmental parameters, a base lambda in reference
conditions is needed to compute the impact of the environment
to it. This base lambda allows us to consider the manufacturing
impact on the hardware reliability.

Based on FIDES model (3), physical and process contributions
are separable for the failure rate called λ. We only keep the physical
contribution to simulate environmental conditions.
λ = (

∑
physical contributions ∗

∏
process contributions) (3)

The process contribution is based on the access frequency to a given
area. Such as justified in part 3.1.3, the frequency of access to a given
area in memory impacts the sensitivity to a particle strikes and
thus the occurrence probability of a soft error in this place. We use
this access frequency as a modifying coefficient of the failure rate.
Therefore, the computed failure rate is different for each memory
areas such as showed in (4), where fi is the frequency of access to

A Fault Injection Platform for Early-Stage Reliability Assessment RAPIDO’18, January 2018, Manchester, UK

the ith memory area and λi is the failure rate for the ith memory
area.

λi = fi ∗ λ (4)
Users are able to choose the number of memory areas that divides
the global memory. Then the probability to obtain a multiple bit
upset is computed and the memory modified regarding results
obtained.

4 EXPERIMENTAL RESULTS
We tested our fault injection model using the MiBench benchmark
suite [12], focusing onto the automotive subset. A mono-core sys-
tem with an arm v7 simulator available on the UNISIM-VP website
[6]. As mention in Section 4.1, this platform has been modified to
allow the fault injection. We used this virtual platform to prove our
concepts and to observe the impact of our implementation onto
the simulation time. As it is a work in progress, the model showed
Figure 4 is not yet fully tested. In this Section, we will show the
impact of our module onto performance and the difference in terms
of errors per type between single and multiple upsets.

System Failure Rate
Computation*

Fault Type

Injection Module

Compare Simulation
Unfaulted Results

Multiple Bit
Upsets Patterns

Diagnostic

 Simulation
With Injection Results

*Computation done one time at the
beginning of the simulation

Yes

No

Code Criticity
Locality

System Component ReliabilityEnvironmental Values (T°, H, V,
Phases, ...)

Do we
inject the

fault ?
Next Execution

Step

Figure 4: Fault Injection Strategy

4.1 UNISIM-VP
A large number of simulators such as [5] exist in the literature
and have different characteristics. UNISIM-VP provides full system
structural computer architecture simulators of electronic boards
and System-on-Chip (SoC) using a processor instruction set inter-
preter. The whole software stack, consisting of the user programs,
the operating system and its hardware drivers, is executed directly
on the simulator. UNISIM-VP is a component-based software and is
thus modular. Hardware components, written in the SystemC lan-
guage [2], model the real target hardware components, such as CPU,
memories, Input/Output, buses and specialized hardware blocks.
Hardware components communicate with each other through Sys-
temC TLM-2 [3] sockets that act like the pins of the real hardware.

The service components are not directly related to pure computer
architecture simulation. They allow initializing and driving of sim-
ulation. Services range from debuggers, loaders, monitors, host
hardware abstraction layer and of course our fault injection mod-
ule.

We use UNISIM-VP as our platform because of its transactional
model that enable to build representative and efficient simulators.
Moreover, its modular architecture enable re-usability and portabil-
ity of our work to other simulation platforms.

4.2 Results
4.2.1 Performance. We provide results regarding the perfor-

mance of our implementation. Unfortunately, as shown in Figure 5,
the non-optimized version of our module has drastically impacted
the simulation performance. This impact is explained by the func-
tioning of our injection module. Indeed, it analyzes each memory
access to determine which memory area has been accessed and
how many times.

qsort_large

qsort_small

basicmath_small

basicmath_large

Bitcount0.5M

Bitcount1M

0 1 2 3 4 5 6 7 8

Bitcount0.5M

Bitcount1M

basic_math small

basic_math large

qsort small

qsort large

0 0,5 1 1,5 2 2,5

Figure 5: Multiplication of the simulation time for different
tested application

Our first implementation has not shown a significant difference
of the simulation computation time depending on multiple or single
bit injection. As can be seen, the simulation time depends on the
application interaction with the memory. Indeed, for the Basic Math
and Quick Sort applications, the interaction with the memory is
linear and thus the multiplication of the computation time due
to our injection module remains the same even for larger inputs.
However for the Bit Count, the memory interaction is not linear
and depends on the input size. The injection module impact on
computation time raises together with the number of elements to
sort. We explain this difference by the strong interaction between
the computation module and the memory in the case of the Bit
Count.

4.2.2 Multiple Bit Upset Impact. We compare single bit injection
and multiple bits injection. For all tested applications, no robustness
techniques have been implemented and two bits injection have
been used as the reference for multiple bit upset. First, not all
multiple bit injection lead to a deviation from the golden run. Some
faults are silent and thus do not affect the application behavior
or the application result. Obtained errors, after fault injection, are
separated in three categories: silent data corruption, behavioral

RAPIDO’18, January 2018, Manchester, UK Alexandre CHABOT, Reda NOUACER, Ihsen ALOUANI, and Smail NIAR

qso
rt_
sm
all

qso
rt_
lar
ge

ba
sic
ma
th_
sm
all
_m
bu

ba
sic
ma
th_
sm
all

ba
sic
ma
th_
lar
ge_
mb
u

ba
sic
ma
th_
lar
ge

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%
100,00%

silent_data_corruption
results_corruption
behavioral_corruption

Figure 6: Number of results of each injection function of the
application

corruption and result corruption. Figure 6, shows that when a
multiple injection is used, less silent data corruption are obtained.
The explication is that two scenarios can happen: first, two words
in memory are modified; second, the same word is modified twice
and thus is more different than if only one bit is modified. This
justifies why multiple upsets leads to less silent data corruption.

5 CONCLUSION
In this paper, we highlighted issues regarding random injection
and we propose an evolutionary fault injection model that takes
into account environmental conditions, application behavior and
the recent phenomena of multiple bit upsets. Regarding simulation
results, the performance is a drawback to the first implementation
of our approach, this is due to two factors. First our model is config-
urable and employable for different needs and is thus slower than a
classic random number draw. Second, as it is the first implementa-
tion not a lot of optimization procedure have been applied. A first
optimization would be to establish a analysis of the memory access
during the golden run and to use it for all other simulations.

As a future work, we aim to improve our fault injection model
by taking other environmental parameters into account and by
speeding up our application behavior analysis. Moreover, we want
to compare our methodology to existing ones to see the importance
of this addition of precision. Finally, we wish to transfer our model
to multi-core platform and to increase our number of use cases to
observe the relevance of our work.

REFERENCES
[1] 2012. Temperature dependence of neutron-induced soft errors in {SRAMs}. Mi-

croelectronics Reliability 52, 1 (2012), 289 – 293. https://doi.org/10.1016/j.microrel.
2011.08.011 2011 Reliability of Compound Semiconductors (ROCS) Workshop.

[2] Accellera. 2011. SystemC Standard Download page. (2011). http://www.accellera.
org/downloads/standards/systemc

[3] John Aynsley. 2009. OSCI TLM-2.0 language reference manual (ja32 ed.). Open
SystemC Initiative.

[4] Daniela Cancila, Francois Terrier, Fabien Belmonte, Hubert Dubois, Huascar
Espinoza, SÃľbastien GÃľrard, and Arnaud Cuccuru. 2009. SOPHIA: a Modeling
Language for Model-Based Safety Engineering. (2009).

[5] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the Level of Abstraction for Scalable andAccurate ParallelMulti-Core Simulations.
In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 52:1–52:12.

[6] CEA. 2016. UNISIM Virtual Platforms. (2016). http://unisim-vp.org/site/index.
html

[7] Jianjiang Ceng, Weihua Sheng, Jeronimo Castrillon, Anastasia Stulova, Rainer
Leupers, Gerd Ascheid, and Heinrich Meyr. 2009. A high-level virtual platform
for early MPSoC software development. In CODES+ISSS ’09: Proceedings of the
7th IEEE/ACM international conference on Hardware/software codesign and system
synthesis. ACM, New York, NY, USA, 11–20. https://doi.org/10.1145/1629435.
1629438

[8] Eric Cheng, Shahrzad Mirkhani, Lukasz Szafaryn, Chen-Yong Cher, Hyungmin
Cho, Kevin Skadron, Mircea Stan, Klas Lilja, J.A. Abraham, Pradip Bose, and
Subhasish Mitra. 2016. CLEAR: Cross-Layer Exploration for Architecting Re-
silience - Combining Hardware and Software Techniques to Tolerate Soft Errors
in Processor Cores. (04 2016).

[9] Anand Dixit and Alan Wood. 2011. Impact of New Technology on Soft Error
Rates. Reliability Physics Symposim (IRPS) (2011), 486–492.

[10] M. Ebrahimi, H. Asadi, R. Bishnoi, and M. B. Tahoori. 2016. Layout-Based Model-
ing and Mitigation of Multiple Event Transients. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 35, 3 (March 2016), 367–379.
https://doi.org/10.1109/TCAD.2015.2459053

[11] FIDES group. 2010. Reliability Methodology for Electronic Systems.
[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.

[n. d.]. MiBench: A Free, Commercially Representative Embedded Benchmark
Suite. ([n. d.]).

[13] A. S. Hartman, D. E. Thomas, and B. H. Meyer. 2010. A case for lifetime-aware task
mapping in embedded chip multiprocessors. In 2010 IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).
145–154. https://doi.org/10.1145/1878961.1878987

[14] Jia Huang, Andreas Raabe, Kai Huang, Christian Buckl, and Alois Knoll. 2012.
A framework for reliability-aware design exploration on MPSoC based systems.
Design Automation for Embedded Systems 16, 4 (01 Nov 2012), 189–220. https:
//doi.org/10.1007/s10617-013-9105-6

[15] Michael Hutter and Jörn-Marc Schmidt. 2014. The Temperature Side Channel
and Heating Fault Attacks. IACR Cryptology ePrint Archive 2014 (2014), 190.
http://eprint.iacr.org/2014/190

[16] Y. Kagiyama, S. Okumura, K. Yanagida, S. Yoshimoto, Y. Nakata, S. Izumi, H.
Kawaguchi, and M. Yoshimoto. 2012. Bit error rate estimation in SRAM consider-
ing temperature fluctuation. In Thirteenth International Symposium on Quality
Electronic Design (ISQED). 516–519. https://doi.org/10.1109/ISQED.2012.6187542

[17] M. Meterelliyoz, J. P. Kulkarni, and K. Roy. 2008. Thermal analysis of 8-T SRAM
for nano-scaled technologies. In Low Power Electronics and Design (ISLPED), 2008
ACM/IEEE International Symposium on. 123–128. https://doi.org/10.1145/1393921.
1393953

[18] Reda Nouacer, Gilles Mouchard, and Daniel Gracia-Perez. 2012. UNISIM Virtual
Platforms. (01 2012). RAPIDO’12 - 4th Workshop on: Rapid Simulation and
Performance Evaluation: Methods and Tools.

[19] D. Radaelli, H. Puchner, Skip Wong, and S. Daniel. 2005. Investigation of multi-bit
upsets in a 150 nm technology SRAM device. IEEE Transactions on Nuclear Science
52, 6 (2005), 2433–2437.

[20] R. J. RodrÃŋguez and S. Punnekkat. 2014. Cost Optimisation in Certification
of Software Product Lines. In 2014 IEEE International Symposium on Software
Reliability Engineering Workshops. 509–514. https://doi.org/10.1109/ISSREW.2014.
103

[21] Louis Scheffer, Luciano Lavagno, and Grant Martin. 2006. EDA for IC System
Design, Verification, and Testing (Electronic Design Automation for Integrated
Circuits Handbook). CRC Press, Inc., Boca Raton, FL, USA.

[22] C. Shao, H. Li, G. Xu, and L. Xiong. 2014. Design for security test against fault
injection attacks. Electronics Letters 50, 23 (2014), 1677–1678. https://doi.org/10.
1049/el.2014.1666

[23] Charles Slayman. 2011. JEDEC Standards on Measurement and Reporting of Alpha
Particle and Terrestrial Cosmic Ray Induced Soft Errors. Springer US, Boston, MA,
55–76. https://doi.org/10.1007/978-1-4419-6993-4_3

[24] B. Vedder. 2015. Testing Safety-Critical Systems using Fault Injection and Property-
Based Testing. Halmstad. Licentiate dissertation.

[25] D. Zhu and H. Aydin. 2009. Reliability-Aware Energy Management for Periodic
Real-Time Tasks. IEEE Trans. Comput. 58, 10 (Oct 2009), 1382–1397. https:
//doi.org/10.1109/TC.2009.56

